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Abstract
Recent experiments, combing ultrafast strong-field irradiation of surfaces with time- and
angle-resolved photoemission spectroscopy, allow for monitoring the time-dependent charge
carrier dynamics and the build-up of transient sidebands due to the radiation pulses. While these
structures are reminiscent of Floquet–Bloch bands, standard Floquet theory is not applicable since
it requires a strictly time-periodic driving field. To study the emergence and formation of such
sidebands, i.e. to provide a link between common Floquet physics and dynamical mechanisms
underlying short driving pulses, we consider a generalization of Floquet theory, the so-called t− t ′

formalism. This approach naturally extents Floquet theory to driving field amplitudes with a
superimposed envelope shape. Motivated by experiments we study 2D Dirac Hamiltonians subject
to linearly and circularly polarised light waves with a Gaussian field envelope of a few cycles. For
these Floquet–Bloch Hamiltonians we study the evolution of their Floquet–Bloch spectra,
accompanied by a systematic analysis of the time-dependent (sideband) transitions. We show that
sideband occupation requires circularly polarized light for linear Dirac systems such as graphene,
while for Dirac models with trigonal warping, describing surface states of topological insulators
such as Bi2Se3, both linearly and circularly polarised pulses induce sideband excitations.

1. Introduction

External time-dependent electromagnetic fields have emerged as a fruitful tool for controlling quantum
materials [1, 2]. The idea of controlling a quantum lattice system by a strong periodic external field dates
back to the proposal of Dunlap and Kenkre in 1986 [3]. In their seminal work, a charged particle in a 1D
tight-binding model was studied under the effect of a sinusoidal driving. The external field delocalises the
state, although a localised phase could be induced by varying the magnitude and frequency of the external
electric field [3]. The occurrence of a localised phase by tuning the external field, coined coherent destruction
of tunnelling [4], represents an early example of quantum control through external driving, for a review
see [5]. This effect was first observed in Bose–Einstein condensates in a shaken optical lattice [6, 7] where the
suppression of tunnelling for large frequencies was found to correspond to a Bessel function law.

The idea of controlling the response of the system by the external field introduced in Dunlap’s work has
evolved to the more general concept of Floquet engineering [2, 8, 9], where the effective renormalisation of
the parameters of a quantum system is tuned by the external driving, especially in the high-frequency regime.
Floquet engineering has been successfully implemented in ultracold atoms, where the modulation is
introduced by shaking the underlying optical lattice [10–12]. The realisation of the Floquet engineering
technique in solid state systems is a challenging but fruitful, expanding field [13–15]. In this case, the
modulation is performed by external electromagnetic radiation. To achieve the high driving amplitudes
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required, ultrashort laser pulses are commonly used. This leads to short-lived Floquet phases and difficulties
in detecting them.

Recently, the field of Floquet condensed matter has been revisited with the aim of controlling the
topological properties of the systems. Indeed, a topological phase can be induced by applying circularly
polarised light to graphene, leading to a quantum Hall insulator [8, 15–17]. Similarly, a Floquet topological
insulator was proposed in semiconductor quantum wells, where the topological phase can be tuned by a
frequency greater than the bandgap [18, 19]. Experimentally, these phases have been achieved in optical
lattices by a synthetic topological gauge [11], while the light-induced quantum anomalous Hall effect was
first reported in graphene in [15].

On the other hand, time-resolved ARPES measurements have allowed the imaging of Floquet–Bloch
states at the surface of the topological insulator Bi2Se3 [13, 14]. In the first experiments, an intense ultrashort
mid-infrared pulse with energy below the bulk band gap dresses the Bloch states by creating gaps due to
hybridisation of the surface states bands [13]. Indeed, together with the accompanying replicas of the
original bands, avoided crossings in the momentum space appear due to the breaking of symmetries by the
driving, as predicted by theory [18, 20]. Thanks to the striking time resolution of recent ARPES
measurements [21–23], the dynamical formation of sidebands at the surface states of topological insulators
has been observed even with subcycle precision [22].

The experimental observation of the bands within a cycle naturally raises the question of how the Floquet
structure is actually built up from a theoretical perspective. This paper aims to answer this question by
analysing the case of non-periodic driving fields. To this end, the t− t ′ method is employed to study the
time-dependent Floquet band structure [5, 24–27]. The t− t ′ formalism considers two time scales, namely
the envelope timescale and the period related to the frequency, which should be much shorter than the
envelope for the method to work efficiently. In this way, the pulse driving is described using an instantaneous
Floquet basis, with the pulse amplitude as a decoupled parameter. The formalism has been shown to
successfully describe strong pulses in two-level systems [28]. Here we consider the case of an effective 2D
Dirac Hamiltonian describing the surface states of 3D topological insulators, as they are probed in ultrafast
experiments [23, 29].

The paper is structured as follows. In section 2, the standard Floquet formalism is adapted to
non-periodic pulses, starting from a brief review of the Floquet formalism for periodic systems in section 2.1.
In section 2.2, the t− t ′ formalism is introduced and then applied to Bloch Hamiltonians in section 2.3. The
comparison of this formalism with the results from the direct solution of the time-dependent Schrödinger
equation (TDSE) is briefly discussed in section 2.4. Next, the t− t ′ formalism is applied to 2D Dirac models
in section 3. First, the linear Dirac cone is considered in section 3.1 for linear and circularly polarised
Gaussian pulses. Then the case of surface states of Bi2Se3 is discussed in section 3.2. The model considered
can also be employed to describe topological insulators such as Bi2Te3 and Sb2Te3. Finally, section 4
summarises our main results.

2. Floquet theory for non-periodic drivings

The interest in describing non-periodic driving is twofold. On the one hand, in condensed matter systems
the strong driving regime is usually accessible only with short pulses. On the other hand, the recent
time-resolved ARPES measurements open the way to experimentally access how photo-dressing of electrons
is dynamically built up. Indeed, in these experiments the pump pulses are typically of the order of 10THz
(i.e. with Tpulse ∼ 10fs) and thus the subcycle regime can be accessed with the typical fs resolution of the
time-resolved ARPES setups [21, 23, 30]. The usual time dependence of the driving resembles a
Gaussian-like pulse. Hence, the Floquet basis does not naturally arise from the long time limit. Nevertheless,
a Floquet-like formalism is of particular interest in interpreting the appearance of Floquet-type sidebands.

To this end, a generalisation of the Floquet formalism for varying pulse amplitudes is presented in
section 2.2. This formalism is called t− t ′ due to the separation of two time scales, one related to the
evolution of the envelope function and the other to the periodic oscillations. The t− t ′ formalism [5, 24, 26,
27] has recently been applied to the case of strong pulses in two-level systems [28]. In contrast to this work,
here we are concerned with its application to a momentum-dependent Hamiltonian with the aim of
constructing the time-evolved Floquet Bloch spectrum. Before introducing the Floquet formalism for
non-periodic drivings, the standard Floquet formalism is briefly reviewed in section 2.1 in order to set the
notation and to define a term of comparison with the later extension to the t− t ′ formalism.
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2.1. Floquet formalism for time-periodic drivings
Floquet theory for time-periodic systems is used to deal with Hamiltonians of the form

Hper (t) =H0 +V(t) , (1)

whereH0 is the time-independent Hamiltonian of the system and V(t) describes the coupling with the
periodic driving such that V(t) = V(t+T). Here, the period T is related to the driving frequency, i.e.
ω = 2π/T. The final goal is to solve the TDSE

ih̄
d

dt
|ψ (t)⟩=Hper (t) |ψ (t)⟩ , (2)

for the state |ψ(t)⟩. Due to the time periodicity of V(t), the TDSE is solved in a convenient basis, called
Floquet basis |ϕFb(t)⟩, where b is the band index. The state is expanded in the Floquet basis [31]

|ψ (t)⟩=
∑
b

fb |ϕFb (t)⟩ , (3a)

where fb are complex constants, the summation is carried over the bands and the Floquet functions are
defined as

|ϕFb (t)⟩= e−iξbt/h̄ |ub (t)⟩ . (3b)

Here ub(t+T) = ub(t) is a periodic function, while the exponential part is given by the so-called Floquet
quasi-energy ξb. Note that the energy is not a conserved quantity of the system due to the breaking of time
reversal invariance. However, the periodicity creates a discrete invariance, which translates into a
conservation of the quasi-energy modulo the driving frequency. All Floquet solutions to the TDSE can be
shifted to quasi-energies that fall within the same interval of width h̄ω. This leads to the definition of the
Floquet–Brillouin zone (FBZ) such that the first FBZ (1FBZ) contains all the quasi-energies in the interval
−h̄ω/2< ξ1FBZ < h̄ω/2. The quasi-energies ξ1FBZ shifted by integer values of h̄ω form the so-called Floquet
replicas or sidebands

ξ(b,l) = ξ1FBZb + lh̄ω , (4)

with l an arbitrary integer.
The solution of the TDSE (2) for a periodic driving is then reduced to set the Floquet states |ub(t)⟩, the

quasi-energies ξb and the projection fb of the initial states over the Floquet states. A common strategy for this
is to exploit the periodic properties of |ub(t)⟩ and perform a discrete Fourier series decomposition in terms
of the harmonics of the driving frequency, as explained in more detail in the appendix A. Within the Fourier
decomposition, it is possible to obtain an effective time-independent Floquet–Fourier Hamiltonian given
by [32]

Hmn =
1

T

ˆ
T
dtHper (t)e

i(m−n)ωt −mh̄ωδm,n . (5)

In the former expressionsm,n are integers corresponding to the harmonic indices of the Fourier expansion.
The Floquet states and the quasi-energies are then obtained by solving the time-independent eigenvalue
problem in Fourier space given by (A.3).

Finally, some remarks about the projection coefficients fb in (3a) are due. In the case of the time-periodic
driving, the coefficients fb are time-independent. They are defined as the projection of the states onto the
Floquet functions for any time t as

fb = ⟨ϕFb (t)⟩ψ (t) . (6)

In particular, given an initial state, the coefficients fb can be calculated at t= 0. Then, for a periodic driving,
the time evolution is dictated by (3a) and the dynamics is encoded in the basis itself, so that the coefficients fb
remain constant.

The projection coefficients fb are of particular interest because they can be related to the experimental
imaging of the Floquet spectra. In particular, in the case of periodic Floquet driving and neglecting the effect
of the probe pulse in photoemission spectroscopy experiments, the transition probability amplitude is
expected to be proportional to [32]

P(Ω) =
∑
b,m

|fb|2|fm,b|2 δ (ξb/h̄+mω−Ω) , (7)
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where the fm,b ≡ ⟨u(m)
b | ψ(0)⟩ is defined as the projection of the initial state onto them-th replica (see

appendix B for further details). In view of this expression, |fm,b|2 can be interpreted as the occupations of the
mth FBZ, and the intensity of the photoelectron spectroscopy signal is expected to be proportional to this
magnitude.

2.2. Floquet t− t ′ formalism
Within the Floquet t− t ′ formalism one decouples the amplitude of the driving from the oscillatory part of
the pulse, which is still considered to be time-translationally invariant. The Hamiltonian of the driven system
is then expressed as

Hpulse (t) =H0 + a(t)V(t) . (8)

Here V(t) = V(t+T) is periodic and a(t) describes the amplitude envelope. The driving frequency ω is
considered to be constant and the only main assumption is that a factorisation of the driving into an
envelope and a fast oscillation are appropriate for the non-periodic pulse.

If the evolution of the envelope is considered separately from the time-periodic part, the TDSE for the
Hamiltonian (8) can be expressed as

ih̄
d

dt
|ψ (t)⟩=Hpulse (a(t) , t) |ψ (t)⟩ , (9)

whereHpulse has a parametric dependence on the amplitude due to the factorisation of the vector potential.
For a fixed amplitude a(t), equation (9) is the same as that for a periodic Floquet driving, whose solution can
be expanded in the instantaneous Floquet basis (3a):

|ψ (t)⟩=
∑
b

fb (t) |ϕFb (a, t)⟩ . (10)

Although (10) is similar to (3a), in the non-periodic case the expansion coefficients are time-dependent and
the Floquet basis depends on the amplitude a(t). The instantaneous Floquet states involved in the former
expansion are given, as in the periodic Floquet formalism, by a periodic function times a phase factor related
to the quasi-energy by

|ϕFb (t)⟩= e−iξb(a)t/h̄ |ub (a, t)⟩ . (11)

Substituting this factorisation into (10), we obtain the following expression for the solution of the TDSE with
parametric dependence on the amplitude:

|ψ (t)⟩=
∑
b

fb (t) e
−iξb(a) t/h̄ |ub (a, t)⟩ . (12)

Finally, the following quantities related to the Fourier expansion are defined

|uα (a, t)⟩ ≡ eilωt |ub (a, t)⟩ , (13)

where α≡ (b, l) labels the band and the harmonics. The quasi-energy is also related to its replicas by

ξα (a) ≡ ξb (a)+ lh̄ω . (14)

Using the former harmonic decomposition, the evolution of the states ofHpulse as a function of the
instantaneous Floquet states is then written as

|ψ (t)⟩=
∑
α

cα (t) |uα (a(t) , t)⟩ , (15)

where cα(t) are the expansion coefficients with respect to the harmonics. Although fb and cα obey a similar
expression, cα(t) includes by definition the contribution of the (instantaneous) Floquet quasi-energy.
Therefore, a direct identification of the two quantities is not possible. However, using (15) as an ansatz for
the TDSE, the following expression

ih̄
dcα
dt

=
∑
β

Htt ′

αβ (a(t)) cβ (t) (16)

4
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for the evolution of the expansion coefficients is obtained, where the HamiltonianHtt ′

αβ is given by

Htt ′

αβ ≡ δαβξα (a(t))− ih̄
da

dt
Gtt ′

αβ (a(t)) , (17a)

Gtt ′

αβ (a(t))≡
ˆ T

0

dt ′

T
⟨uα (a(t) , t ′) |∂a⟩uβ (a(t) , t ′) . (17b)

Here, ∂a = ∂/∂a. The two contributions in expression (17a) account for the phase acquisition associated
with the quasi-energies and the transition between Floquet replicas given by the Gtt ′

αβ term. More details
about the derivation of equation (16) are given in appendix C. Equation (16) imposes that the amplitude a(t)
is differentiable with respect to t, that the states |u(a, t)⟩ are differentiable with respect to a and that the
completeness relation of the states is satisfied for a fixed amplitude a, see (C.7). Within this assumptions, the
solution of (16) is equivalent to solving exactly the TDSE for the time-dependent Hamiltonian (8). The
advantage of using the t− t ′ formalism lies in the possibility of separating the dynamics of the system into
two different regimes, depending on the leading terms in the evolution described by (17a): when the leading
term is the first in (17a), the evolution is adiabatic and it is given by the acquisition of a phase. On the other
hand, when the second term in (17a) is dominant, the evolution is mainly given by the non-adiabatic
transitions between sidebands. Since it is equivalent to the TDSE, the t− t ′ formalism goes beyond Floquet
adiabatic approximation. However, it can be related to adiabatic perturbation theory [33] if it is employed to
build an expansion in powers of h̄ [26].

Notice that, the overall gauge invariance of the Floquet basis at a fixed amplitude a is still not fixed. For
simplicity, we can choose the gauge parallel transport on the parameter a

⟨uα (a, t) |∂a⟩uα (a, t) = 0 . (18)

This condition must be imposed on the states before the time evolution of cα(t) is calculated according
to (16). Choosing this gauge is not possible whenever there are obstructions in the Floquet–Berry phase
implying a non-trivial topological structure in the Floquet space. Such topological obstructions give rise to
anomalous topological states in gaps between different FBZs that have no static counterparts [34, 35]. This
case is not treated here. A minimal example of the t− t ′ formalism is analysed in section 3.1 for the case of a
linear Dirac Hamiltonian driven by a linearly polarised pulse.

2.3. Adaptation of the Floquet t− t ′ formalism to Floquet–Bloch Hamiltonians
So far, the t− t ′ formalism has been derived in a very general and schematic way. Our main aim, however, is
to apply this formalism to the calculation of Floquet bands for a non-periodic driving applied to a spatially
translation invariant Hamiltonian in D dimensions, which includes N bands. In the absence of the external
driving, the Hamiltonian of this system is given by a Bloch Hamiltonian Ĥ0(k) parametrically dependent on
the momentum k= (k1, . . . ,kD). The external driving is included via minimal coupling, i.e. by replacing
h̄k→ eA(t)+ h̄k, where A(t) is the vector potential of the electromagnetic field. The time-dependent part of
the Hamiltonian (8) is then given by

Ŵ(k, t) = Ĥ0 [k+ eA(t)/h̄]− Ĥ0 (k) , (19)

where Ŵ(k, t) is an operator that can be represented by a N ×N matrix that inherits the non-periodicity in
time of the vector potential under consideration.

In order to directly apply the formalism presented earlier, the time-dependent part should be factorised
to satisfy (8). This means

Ŵ(t) = a(t) V̂(t) , (20)

with a(t) a non-periodic scalar function and V̂(t) a periodic operator, i.e. V̂(t) = V̂(t+T). However, this
factorisation is not generically possible in the case of a Hamiltonian with complicated dependencies on the
momenta, as is usually the case for k · p low-energy Hamiltonians. For example, different polynomial orders
in the momenta make this task much more difficult.

To treat these Hamiltonians in the t− t ′ formalism, we define the auxiliary variable η(t) so that the
Hamiltonian can be written generally as [26]

Ĥ(k,η (t) , t) = Ĥ0 (k)+ Ŵ(k,η (t) , t) , (21)

5
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with Ŵ(k,η, t+T) = Ŵ(k,η, t) for a fixed η. Thus, for each fixed value of η, the corresponding Floquet basis
is defined by

|ϕFb (k,η, t)⟩= e−iξb(k,η)t/h̄ |ub (k,η, t)⟩ . (22)

The Floquet quasi-energies ξb(k,η) and the Floquet spinors |ub(k,η, t)⟩ can be calculated employing the
Floquet–Fourier expansion in (5) upon substitution ofHper(t)→ Ĥ(k,η, t). Note that this is possible
because, even if the periodic part is not easily factorisable, the frequency of the period T is well defined at
fixed η and it is the same for all η values. Thus, the η-dependent Fourier modes are defined by (A.1) as

|ub (k,η, t)⟩=
∞∑

m=−∞
e−imωt |u(m)

b (k,η)⟩ . (23)

The Floquet replicas are obtained by generalising (13) and (14) where, as before, the double index α≡ (b, l)
indicates the band b and the replica l:

|uα (k,η, t)⟩ ≡ eilωt |ub (k,η, t)⟩ , (24)

ξα (k,η) ≡ ξb (k,η)+ lh̄ω . (25)

Although the definition of the replica index is arbitrary, in the specific case of Floquet–Bloch Hamiltonians it
is particularly convenient to define the states in such a way that, in the limit without external driving, the
replica with l= 0 coincides with the original band dispersion. In other words, instead of using the 1FBZ, the
energy ξb(k,η) is defined by the limit

lim
Ŵ(k,t)→0

ξb (k,η (t))→ ϵb (k) , (26)

where ϵb(k) defines the bth band of the unperturbed Hamiltonian from the time-independent Schrödinger
equation Ĥ0(k)ψb = ϵb(k)ψb. Note that the limit in (26) conveniently fixes the replica indices as well as
defines the state which Fourier components are employed to define the instantaneous Floquet basis for each
time-dependent amplitude.

Finally, the TDSE for the Hamiltonian Ĥ(k,η, t) can be written employing the Floquet decomposition

|ψ (t)⟩=
∑
α

cα (k, t) |uα (k,η (t) , t)⟩ , (27)

which leads to the form, equivalent to (16),

ih̄
dcα (k, t)

dt
=
∑
β

Ĥtt ′

αβ (k,η (t)) cβ (k, t) , (28)

where

Ĥtt ′

αβ (k,η)≡ δαβξα (k,η)− ih̄
dη

dt
Ĝtt ′

αβ (k,η) , (29a)

Ĝtt ′

α,β (k,η)≡
∞∑

m=−∞

〈
u
(m+l−l ′)
b (k,η)

∣∣∣∣∂ηu(m)
b′ (k,η)

〉
. (29b)

The indices are defined as α≡ (b, l) and β ≡ (b ′, l ′), and the partial derivative is denoted by ∂η = ∂/∂η .
More details on the derivation of this expression are given in appendix D.

This formulation of the t− t ′ problem is particularly convenient because it does not require the explicit
factorisation in (20) and, moreover, it gives the evolution of the expansion coefficients cα(t) within a
time-independent effective Hamiltonian (29a) constructed by using the static Fourier components. In
addition, it is possible to associate the parameter η with the more convenient time-dependent function in the
problem and then play with the properties of the partial derivative in (29b) to map the Fourier problem into
the appropriate formulation for a numerical solution. In this case, the parallel transport condition has to be
implemented as a function of η and reads〈

u(m)
b (k,η)

∣∣∣∣∂ηu(m)
b (k,η)

〉
= 0 . (30)

Note that throughout this section the kmomenta have been treated as parameters of the Hamiltonian
and the Floquet t− t ′ problem has been defined separately for each kmode. However, we consider it

6
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appropriate to keep the k-dependence explicit in order to define more precisely the problem of factorising
the time-dependent part given by (20) and to discuss the more convenient definition of the replicas by the
limit (26). In fact, only by explicitly keeping the k-dependence it becomes clear that it is possible to
completely decouple the time evolution and the generally complex momentum dependence entering through
the minimal substitution by means of the auxiliary parameter η, which can be uniquely defined for all k
modes of the problem.

2.4. Comparison with direct solution of the TDSE
The central problem of the t− t ′ formalism is to solve the differential equations (16) or (28) for the
evolution of the expansion coefficients cα(t). With these and the time dependent Floquet basis it is possible
to obtain the time evolution of the state according to equations (15) or (27). However, the solution of ψ(t) is
not the central result of the t− t ′ formalism. In fact, the evolution of the states is more easily solved by the
TDSE in its differential form (9) using the non-periodic Hamiltonian (8). Formally, the solution of the TDSE
by direct integration of the differential equation is given by the time-evolution operator

U(t, t0) = T exp

[
− i

h̄

ˆ t

t0

H (t)dt

]
, (31)

where T denotes the time ordering operator. Then, the evolution of an initial state |ψ(t0)⟩ is expressed as a
function of the evolution operator by the well-known expression

|ψ (t)⟩= U(t, t0) |ψ (t0)⟩ . (32)

For a Bloch Hamiltonian with N bands, the inclusion of the instantaneous Floquet basis increases the size of
the problem by the Fourier–Floquet expansion, leading to a Hilbert space of sizeMN×MN, whereM is the
number of harmonics considered. The direct solution of the TDSE can only refer to the evolution of the
states themselves and, due to the lack of translational invariance in time, the energy cannot be defined. The
instantaneous Floquet basis used to factorise the states provides a more convenient interpretation of the
dynamics in terms of the Floquet sidebands for time-dependent driving amplitudes. Thanks to the
well-defined driving frequency ω, it is still possible to define the time-dependent spectrum of the
quasi-energies ξα(t) and to interpret the occupancy of the replicas as |cα(t)|2.

Finally, it is also important to underline that the numerical effort of enlarging the Hilbert space
dimension up toMN×MN is still not so large in comparison to the spectrum of frequencies that can be
obtained by Fourier transforming ψ(t) from the TDSE. In fact, thanks to the Fourier basis written for each η,
the sum overm corresponding to the harmonics in (29b) can be truncated by analysing the support of the
eigenvectors of the Floquet–Fourier expansion, similar to what is done in the usual Floquet–Fourier
calculations.

3. Application of the t− t ′ formalism to Effective Dirac systems

3.1. Linear Dirac model
In this section, we study the 2D linear Dirac model as a first simple example of the implementation of the
t− t ′ formalism and as for later comparison with the Dirac model with trigonal warping analysed in
section 3.2. The linear Dirac model driven by Floquet-like pulses has been extensively investigated in
previous theoretical studies [20, 36, 37]. In particular, the effects of driving on the topology of the bands have
been specifically discussed, leading, e.g. to the concept of Floquet topological insulator [16, 17, 19].

In this work, we will not investigate the topological nature of the bands, but will focus on the
interpretation of the sidebands arising from the external driving. The system is given by the usual linear
Dirac Hamiltonian

H0

(
kx,ky

)
= h̄v

(
kxσy − kyσx

)
. (33)

For the sake of simplicity, a general elliptic driving is considered, given by the following in-plane vector
potential

A(t) =
[
ax (t) sin(ωt) , ay (t) sin(ωt+ θ0) ,0

]
, (34)

where ax(t) and ay(t) are the time-dependent amplitudes of the driving, ω is the driving frequency and θ0 is
the initial phase shift between the two components. The circular driving is obtained for θ0 = π/2 and
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ax(t) = ay(t). Linearly polarised pulses are obtained by setting one of the amplitudes to zero, e.g. ay(t) = 0.
By minimal substitution, the vector potential enters the Dirac Hamiltonian as

H
(
kx,ky, t

)
=H0

(
kx,ky

)
+Wx (t)+Wy (t) , (35a)

Wx (t) = evax (t) sin(ωt)σy , (35b)

Wy (t) =−evay (t) sin(ωt+ θ0)σx , (35c)

where e is the elementary charge.
For concreteness, we consider a Gaussian envelope

ai (t) = Ai e
−(t/τ)2 , (36)

where i = x,y, Ai is the maximum amplitude and τ is a real parameter giving the width of the Gaussian
pulse. The most direct identification of the parameter η for this pulse is given by the Gaussian modulation,
i.e. by η(t) = e−(t/τ)2 . Note that in the case of the Gaussian pulse exerted to the linear Dirac Hamiltonian, the
factorisation given by (20) is straightforward due to the mere presence of linear terms in momenta in H0.

For a fixed η, the expansion over the Fourier harmonics (A.3) leads to an effective Hamiltonian with the
simplified structure of a monocromatic field

HF =



. . . Q 0
Q† H0 + h̄ω Q 0
0 Q† H0 Q 0

0 Q† H0 − h̄ω Q

0 Q† . . .

 , (37)

where the momentum dependence was omitted in the Floquet effective Hamiltonian HF =HF(kx,ky,η) as
well as in the Dirac Hamiltonian H0 =H0(kx,ky). The term that couples the replicas is

Q=− i

2
evAxησy +

1

2
evAyη [i cos(θ0)− sin(θ0)]σx . (38)

The diagonalisation of HF, equation (37), yields the Floquet quasi-energies ξb(k,η) as well as the set of

Fourier modes |u(m)
b (k,η)⟩ with b= 1,2 for the two bands of the model. To compute the quasi-spectrum, the

Fourier expansion has to be truncated. In this case, the simple monochromatic structure already yields a very
reduced support of the Floquet vectors in the harmonic space. In fact, only replicas up to the first order are
coupled by the driving and few Fourier components are needed in the expansion to obtain a reliable result.

3.1.1. Linearly polarized Gaussian pulse
The case of linear polarization is particularly instructive for the interpretation of the sidebands. The
spectrum for ky = 0 is not modified by the external driving and there are no gaps in the spectrum. This can
be proved by checking that the commutator of the Hamiltonian without perturbation H0(kx,ky = 0) and the
correction generated by the external pulseWx(t) commute[

H0

(
kx,ky = 0

)
,Wx (t)

]
= 0 . (39)

Thus the eigenvectors ofH0(kx,ky = 0) still diagonalize the complete HamiltonianH(kx,ky = 0, t). Therefore,
for linear polarization in the x-direction, the TDSE can be integrated, leading for the states at ky = 0 to [20]

|ψ
(
kx,ky = 0, s

)
⟩= e−isvkx(t−t0)eisevAx

´ t
t0
dt ′η(t) sin(ωt ′)/h̄ |ψ0

(
kx,ky = 0, s

)
⟩ , (40)

where s=±1 is the band index and ψ0 denotes the eigenstates of the original Dirac Hamiltonian. The
driving only causes a phase change in the states.

Even if the time evolution dictated by the direct integration of the TDSE is trivial for the state in (40), the
interpretation of the exponential factor as an equivalent quasi-energy in the corresponding Floquet picture
implies a dynamics in the population of the replicas. In fact, starting from the simplest case of the static
Floquet picture obtained by fixing η, the corresponding phase gained is related to the occupation of the
Floquet replicas. The results for fixed η are shown in figure 1, where the transition probability amplitude
associated with the photoemission is calculated according to expression (7). The initial state chosen is a
Bloch valence band state for the system in the absence of external driving, i.e. the valence state of
H0(kx,ky = 0). The initial state in the valence branch of the Dirac cone is pumped to the nearby replicas,

8
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Figure 1. Transition probability amplitude P(Ω) (colour coded) for the linear Dirac Hamiltonian at ky = 0 in the case of the
linearly polarized driving in x (i.e. by setting Ay = 0). The pulse amplitudes are held fixed at evAxη/(h̄ω) = {0.1,0.5,1} in panels
(a), (b) and (c), respectively. The amplitude of P(Ω) is computed according to (7). The initial state ψ0 employed in the
calculations is the valence state for the Hamiltonian (33) at ky = 0. Notice that the colormap used a power norm scale to improve
clarity. The following colormaps for P(Ω) employ the same convention.

interpreted as photon-dressed bands, with an enhanced contribution upon increasing the pulse amplitude.
Thus, in figure 1(c), which corresponds to the higher amplitude studied, the state is spread over the two
upper and lower replicas. In contrast, in panels (a) and (b) the density is located mainly in the valence band
of the original Dirac cone. It is clear from panel (a) that in the limit of vanishing amplitude Ax, the obtained
Floquet band structure still shows the Floquet replicas due to the finite frequency ω. However, in this limit,
the harmonic Fourier series becomes a purely mathematical tool and the sidebands do not describe any
populated physical state. For this reason it is important to discuss the Floquet–Bloch band structure using
observables such as the transition amplitude or the time-averaged density of states [9, 16, 38, 39] to define
physical quasi-energies.

In figure 1 the linear polarisation only populates replicas of the same band. This corresponds to a
non-zero transition probability between replicas from the same band which is consistent with the form of the
coupling Q in (38) for Ay = 0. Thus, in figure 1, the initial valence state spreads only over valence replicas. A
mixed initial state would have produced occupancies in the conduction replicas as well, but in this case both
types of dynamics, valence to valence sidebands and conduction to conduction sidebands, are decoupled.

Next, we include the time dependence in the parameter η to solve the expansion coefficients cα(t)
from (28). For sake of concreteness we fix vkx/ω = 0.1 and compute the evolution of the expansion
coefficients as a function of time. The results are shown in figure 2 for different maximum amplitudes Ax and
by varying the width of the pulse τ , in panels (a) and (b), respectively. The initial state considered is the
valence eigenstate of the unperturbed Hamiltonian H0(kx,ky = 0). In double-index notation this state
corresponds to (b, l) = (0,0) and the initial occupation is expressed by having only a non-zero expansion
coefficient c(0,0) = 1 for t→−∞. Due to the external Gaussian pulse, the initial state (0, 0) is depleted and
the sidebands are occupied, as can be seen in panels (a) and (b) for different pulse strengths and widths.
Since only the same band replicas are coupled by the external pulses, only the expansion coefficients of the
valence bands, i.e. b= 0, are non-zero. In particular, for the parameters chosen in panels (a) and (b), only
replicas up to 2nd and 3rd order, respectively, are populated.

In figure 2(a) the effect of the pulse is studied for different amplitudes. The depletion of the original band
towards the sidebands is stronger for increasing maximum pulse amplitude Ax, consistent with the linear
increase of the coupling Q with Ax in (38). Note that the maximum spreading of the occupancy towards
different replicas is achieved when the derivative of the pulse envelope is maximum, i.e. at t=±τ/

√
2.

Figure 2(b) shows the effect of pulse width τ . In this case, increasing τ decreases the transition rate to higher
replicas. This can be understood from (28): the term Ĝ(k,η) does not depend on the pulse width, while the
prefactor of the derivative dη/dt is indeed increased for shorter pulses, leading to a stronger effect of the
pulse by decreasing τ . Therefore, for pulses that reach the same maximum value of the amplitude, the
strongest coupling between replicas is achieved by increasing the sharpness of the pulse envelope. Thus, the
increase in the derivative of the pulse envelope is related to a larger change in cα(t) for a given α. Conversely,
in the limit of an infinitely slow envelope variation, the derivative dη/dt tends to zero and the expansion
coefficients are simply given by

cα (t) = cα (t= 0) e−iξbt/h̄ . (41)

Thus, in the strictly adiabatic limit, |cα| remains constant and the evolution is given by a phase acquisition.

9
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Figure 2. Absolute value of the expansion coefficients cα(t) as a function of time for the linearly polarised driving from the
solution of (28) for vkx/ω = 0.1 and ky = 0. In panel (a), the |cα(t)| are plotted for fixed width τ/T= 1 and varying the
maximum amplitudes evAx/(h̄ω) = {1,2,3,4,5}, in the colour code. The line type corresponds to the order of the replicas, as
indicated in the legend. The notation between brackets is (b, l), where b is the band index and l is the replica index. In panel (b),
the |cα(t)| are plotted for fixed evAx/(h̄ω) = 5 and τ/T= {0.8,1,1.2}, as indicated in the colour code. The initial state
considered is the valence eigenstate of H0(kx,ky = 0), i.e. the state in band b= 0.

Figure 3. Expansion coefficients |cα(t)|2 projected over the Floquet spectrum for three times t/T= {−1.2,−0.48,0}, in panels
(a), (b) and (c), respectively. The pulse considered is a linearly polarised pulse with τ/T= 0.8 and maximum amplitude
evAx/(h̄ω) = 5. The initial state considered is the valence eigenstate of H0(kx,ky = 0). The spectrum is plotted for ky = 0.

Finally, note that the coupling between Floquet replicas given by (38) is independent of the momenta,
namely the dynamics of all kx states with ky = 0 is equivalent up to an initial phase shift. This is consistent
with the direct integration of the TDSE in the expression (40) and can also be demonstrated by showing that
the eigenvectors of H0(kx,ky = 0) are the eigenstates of σy and hence equation (28) for different kx differs
only by the term ξα which gives the phase acquisition. In conclusion, the results in figure 2 are actually valid
for any kx mode. Given this, it is almost straightforward to construct a snapshot of the evolution of the
occupation of the Floquet band structure as a function of time. This is shown in figure 3, where the squared
modulus of the amplitude, |cα(t)|2, is projected onto the Floquet spectrum for three time instants
corresponding to η(t) = {0.1,0.7,1}, giving t/T= {−1.2,−0.48,0}. From (27) it is clear that |cα(t)|2 can
indeed be interpreted as the time-dependent occupancy of the different Floquet replicas. Thus, figure 3 can
be understood as the time evolution of the Floquet–Bloch band occupancies.

3.1.2. Circularly polarized Gaussian pulse
In the case of circular polarisation, the operator describing the time-periodic field and the original
Hamiltonian do not commute, in contrast to linear polarisation [20]. The driving then produces not only a
rigid shift of the bands, but also a hybridisation of the Floquet replicas, leading to gaps in the spectrum.
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Figure 4. Transition probability amplitude for the Dirac Floquet spectrum for a circularly polarized driving at ky = 0 (i.e. by
setting Ax = Ay and θ0 = π/2). The pulse amplitudes are evAi η/(h̄ω) = {0.1,0.5,1} with i = x,y in panels (a)–(c), respectively.
The colour code corresponds to the amplitude of the P(Ω), calculated according to (7). The initial state ψ0 is the valence state of
H0(kx,ky = 0).

Avoided crossings occur at zero energy and at resonances where the original bands were separated by
multiples of h̄ω [36].

The results for fixed η are shown in figure 4, where the transition probability amplitudes associated with
photo emission (7) are projected over the bands. Again, the initial state considered is the valence band state
of the Dirac cone for H0(kx,ky = 0). Regardless of the polarisation, this initial state is pumped to the nearby
replicas with an increasing efficiency depending on the pulse amplitude. In the case of circular polarisation,
opposite bands are coupled allowing for transitions between their replicas, as can be seen in figures 4(b)
and (c) in the occupation of the replicas of the conduction band for kx ≃ 0.

Next, similar to the previous section, we account for the time dependence in the parameter η when
computing the evolution of the expansion coefficients cα(t) according to (28). For concreteness, we consider
a mode near the Dirac point by fixing vkx/ω = 0.1. The expansion coefficients as a function of time are
plotted in figure 5 for two representative parameter sets. The initial state considered for the time evolution is
again a valence band state for the unperturbed Hamiltonian, i.e. (b, l) = (0,0). In the left panels of figure 5
the evolution is calculated for a maximum amplitude evAi/(h̄ω) = 0.5 with i = x,y. Note that the external
pulse creates a repulsion between the energy levels, see panel (a), which shifts the occupation towards the
conduction band level, i.e. from (b, l) = (0,0) to (b, l) = (1,0). Due to the external driving, part of the
valence band occupation remains in the conduction band after the pulse, see panel (c).

A stronger pulse is considered in the right panels of figure 5, corresponding to an amplitude of
evAi/(h̄ω) = 1 In this case, the level repulsion induced by the pulse actually couples the replicas of opposite
bands, producing small gaps between them, almost imperceptible on the scale of panel (b). This coupling
leads to a shift of the occupation between the replicas as a function of time, as shown in panel (d). In figure 5,
panels (e) and (f) represent the spinorial components of ψ(t) from the t− t ′ solution (27) and the direct
integration of the TDSE. The comparison of the two is a valuable check of the numerical results, which are in
perfect agreement. The comparison of the two parameter sets in figure 5 is a clear example of the advantages
of employing the t− t ′ formalism to identify the adiabatic and non-adiabatic regimes in the time evolution.
In panel (c), the evolution consists of an adiabatic phase acquisition within the same Floquet sideband along
well-defined plateaus. As a function of time, a quasi-adiabatic evolution is observed in panel (c), with a shift
in the population that varies slowly between sidebands. In panel (d), intrinsic non-adiabatic transitions
between replicas are visible. The fast transitions between different |c(b,l)| coefficients are obtained in
correspondence with the avoided crossings of the time-dependent Floquet quasienergies.

Finally, we study the effect of the circularly polarised pulse on the Floquet–Bloch spectrum: figure 6
shows the projection of the expansion coefficients of the t− t ′ basis over the quasi-energies for three instants
of the time evolution corresponding to t/T= {−0.5,0,1}. The coupling between the two bands allows for
transitions between valence and conduction replicas. This is already visible in panel (a) at kx ≃ 0 and at
vkx = nω/2, with n ∈ Z, the resonance condition for the appearance of the pulse-induced gaps. The coupling
not only opens the gaps and pushes the occupation towards the replicas, but also allows for a residual
occupation at the pulse end, leading to a distinctly different reconfiguration of the occupation of the Dirac
cone bands [see panel (c)]. The supplementary figure F1 in appendix F shows additional time snapshots for
completeness.
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Figure 5. Floquet quasi-energies (a), (b), expansion coefficients (c), (d) and evolution of the wavefunction components (e), (f) as
a function of time for two parameter sets. In the left panels the maximum amplitude of the Gaussian envelope is evAi/(h̄ω) = 0.5
with i = x,y, while in the right panels evAi/(h̄ω) = 1. The other parameters are fixed to vkx/ω = 0.1, ky = 0 and τ/T= 3. The
notation between the brackets is (b, l), where b is the band index and l is the replica index.

Figure 6. Expansion coefficients cα(t) projected over the Floquet spectrum for three times t/T= {−0.5,0,2} in panels (a), (b)
and (c), respectively, for a circularly polarized pulse with τ/T= 1 and maximum amplitude evAx/(h̄ω) = 1. The initial state is
the valence eigenstate of H0(kx,ky = 0). The spectrum is plotted for ky = 0.

Table 1. Values for the parameters of Bi2Se3 from [40].

Numerical values for the parameters of Bi2Se3

h̄v0 = 3.33 eV Å C0 =−0.0083 eV M0 =−0.28 eV
h̄3R1 = 50.6 eV Å3 h̄2C2 = 30.4 eV Å2 h̄2M2 = 44.5 eV Å2

3.2. Dirac Hamiltonian for Bi2Se3 surface states
In this section, the t− t ′ formalism is applied to study the surface states of Bi2Se3 in the presence of a
Gaussian pulse. For this material the effective Hamiltonian of the surface states is given by a linear Dirac cone
and an additional trigonal warping term [40–42] leading to

H0

(
kx,ky

)
=
(
c0 + c2h̄

2k2
)
12 + h̄v

(
kyσx − kxσy

)
+ h̄3r

(
k3+ + k3−

)
σz , (42)

where k2 = k2x + k2y and k± = kx ± i ky. The system parameters are related to the bulk spectrum parameters
given in table 1 by [40]

c0 = C0 +α3M0 , c2 = C2 +α3M2 , v= v0α1 , r= R1α1/2 , (43)

where α1 = 0.99 and α3 =−0.15 are defined to match the experimental values of the velocity and the
position of the Dirac points [43] following the fit of [40].
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By including the external pulse through minimal coupling, the Hamiltonian can be written as

H
(
kx,ky, t

)
=H0 +Wx (t)+Wy (t)+Wxy (t) , (44)

whith the time-dependent potentials

Wx (t) = 2rσza
3
x (t)+ (c2σ0 + 6rkxσz)a

2
x (t)

+
[
6r
(
k2x − ky2

)
σz + 2c2kxσ0 − vσy

]
ax (t) , (45a)

Wy (t) = (c2σ0 − 6rkxσz)a
2
y (t)+

(
2c2kyσ0 − 12rkxkyσz + vσx

)
ay (t) , (45b)

Wxy (t) =−6rσzax (t)a
2
y (t)− 12rkyσzax (t)ay (t) . (45c)

Here the elementary charge e and the reduced Planck constant h̄ have been included in units of the
components of the vector potential ax and ay to shorten the notation.

We consider a Gaussian pulse given by (36) and set η(t) = e−(t/τ)2 . For a fixed η, the external driving
couples replicas up to third order due to the higher-order contributions of momenta. The Floquet–Fourier
Hamiltonian is then given by (A.3) that can be written as

HF
mn = (H0 −mh̄ω)δm,n +Q(m−n) , (46)

where the couplings between replicas are given by

Q(0) = η2
c2
2

(
A2
x +A2

y

)
σ0 + η23rkx

(
A2
x +A2

y

)
σz , (47a)

Q(1) =+ηc2
(
iAxkx +Ayky

)
σ0 + η

v

2

(
Ayσx − iAxσy

)
+ η3r

[
iAx

(
k2x − k2y

)
− 2Aykxky

]
σz + η3

3ir

4
Ax

(
A2
x −A2

y

)
σz , (47b)

Q(2) =−η2 c2
4

(
A2
x −A2

y

)
σ0 − η2

3r

2

[
kx
(
A2
x +A2

y

)
+ 2i kyAxAy

]
σz , (47c)

Q(3) =− η3
i rAx

4

(
A2
x + 3A2

y

)
σz , (47d)

Q(−i) =
(
Q(i)

)†
for i = 1,2,3. (47e)

Note that, in addition to the coupling between replicas, the pulse also modifies the energy of the bands
themselves through Q(0). This term results in a trivial energy shift, proportional to c2, and a coupling from
the trigonal warping contribution which tends to close the gap between the bands, proportional to r.

The trigonal warping term then generates different phenomena compared to the case of the simple linear
Dirac Hamiltonian studied in the previous section 3.1. To be specific, the pulse frequency is fixed in the
mid-infrared range to 160 meV, which corresponds to 38.7 THz. This value is taken as a reference from the
experiment in [14]. We further choose linear polarisation because it agrees with measurements by
minimising the so-called laser-assisted photo emission (LAPE) [14, 22]. In ARPES experiments, LAPE is due
to the dressing of the free electron states near the surface of a solid in a pump–probe setup [44–47]. This
effect is usually modelled by Bloch states transitioning to Volkov states, which are the solutions of the TDSE
for a free electron interacting with an electromagnetic field (see [48] for the derivation of Floquet and Volkov
states for Dirac Hamiltonians). Both Floquet and Volkov states exhibit sidebands, and the separation of the
two contributions is of primary importance for the correct interpretation of the ARPES intensities. When the
driving field is polarised in the surface plane [14, 22] the Volkov states are minimised. At the same time, as
we will show below for the Bi2Se3 Hamiltonian, the linear polarisation still exhibits sideband transitions due
to the higher-order terms in the momenta.

3.2.1. Linearly polarized Gaussian pulse
The linear polarisation in this modified Dirac equation leads to much richer physics than in the previously
studied linear Dirac model. In fact, the high-order coupling terms together with the interband coupling Q(0)

allow for transitions between replicas from different bands and create band gaps in the linearly polarised
case. In contrast to the Dirac Hamiltonian, the commutator[

H0

(
kx,ky = 0

)
,Wx (t)

]
=−4i vrkxax (t)

(
a2x (t)+ 3ax (t)kx + 2k2x

)
σx , (48)

is non-zero and contains higher-order terms in the momentum and vector potential leading to couplings
between the replicas. For the drivings considered here, the (avoided) crossings of the replicas have gaps of less
than 10 meV. Figure 7 shows a zoom into a gapped Floquet spectrum for veAx/(h̄ω) = 4.
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Figure 7. Floquet quasi-energy spectrum for the linearly polarised drive with amplitude veAxη/(h̄ω) = 4. In panel (a) the
dispersion is plotted for a wider range of kx, while in panel (b) the (avoided) crossing near zero energy is zoomed in.

Figure 8. Transition probability amplitude P(Ω) projected over the Floquet spectrum at ky = 0 in the case of linearly polarised
driving of a Hamiltonian representing topological insulator surface states. The pulse amplitudes are evAxη/(h̄ω) = {1,2,4} in
panels (a), (b) and (c), respectively. The colour code corresponds to the amplitude of P(Ω), calculated according to (7). The
initial state ψ0 used in the calculations is the valence state for the Hamiltonian (42) at ky = 0.

In figure 8, the transition probability amplitude P(Ω) computed from (7) is projected over the Floquet
spectrum for fixed η. In contrast to the linear Dirac model shown in figure 1, P(Ω) depends on kx for Bi2Se3.
The initial state chosen in figure 8 is once more the valence band state of H0 leading to a P(Ω) which spreads
mainly over valence band replicas. The number of replicas involved depends on the pulse strength: in
panel (a) the original band is mainly occupied, with a smaller contribution in the first and second replicas,
while for evAxη/(h̄ω) = 4 in panel (c) P(Ω) spreads over sidebands of different orders, depending on kx.

We fix the momenta to two representative values vkx/ω = 0.21 (0.82), corresponding to the left (right)
columns of figure 9. The state at vkx/ω = 0.21 is near to the Dirac point and hence far from any replica
crossing when the pulse is included. On the other hand, the vkx/ω = 0.82 state is right next to the hybridized
gap between replicas of second order, see figure 7. The initial state considered is the valence eigenstate of the
unperturbed Hamiltonian, corresponding to (b, l) = (0,0), so that c(0,0) = 1 at t→−∞. Due to the trigonal
warping and the quadratic terms, the Floquet quasi-energies are modified by the external pulse. For
vkx/ω = 0.21 in panel (a) the Floquet quasi-energies follow the rising and decaying of the pulse envelope,
while for vkx/ω = 0.82 in panel (d) the conduction and valence bands hybridise at two different times.

For the state closer to the Dirac point, in the left panels of figure 9, the evolution is dictated by a shift of
the occupation towards the first valence sidebands, i.e. to (b, l) = (0,±1). On the other hand, for the state at
vkx/ω = 0.82, in the right panels of the figure 9 the occupation is shifted towards the conduction sidebands
due to the hybridisation of the bands. Note that due to the higher momenta, the hybridising sidebands come
from different replicas, in particular the hybridisation occurs mainly between replicas two orders lower,
i.e. between (0,n) and (1,n− 2).

The richer dynamics of the higher kx modes of the Bi2Se3 states driven by the linearly polarised pulse is
due to the higher-order terms in the Hamiltonian. It is similar to the case of the circularly polarised pulses in
the linear Dirac cone. It is therefore interesting to analyse the effect of these terms in more detail. In figure 10
the evolution of the mode with vkx/ω = 0.82 is plotted considering two limiting cases: the Dirac model with
quadratic onsite corrections, obtained by setting r= 0 in the Hamiltonian (44), and the Dirac model with
trigonal warping corrections, obtained by setting c2 = 0 in (44). The results are plotted in figure 10 for the
Dirac model with quadratic corrections and the Dirac model with trigonal warping in the left and right
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Figure 9. Floquet quasi-energies (a), (b), expansion coefficients (c), (d) and evolution of wavefunction components (e), (f) as a
function of time for vkx/ω = 0.21 (0.82) in the left (right) panels. The other parameters are fixed at ky = 0, τ/T= 1 and
evAi/(h̄ω) = 4. In (a), (b) the colour code distinguishes the quasi-energies with from the same replica and the valence
(conduction) band is denoted by a continuous (dotted) line. To simplify the plot, in (c), (d) only the non-zero expansion
coefficients are plotted, corresponding to the replicas indicated in the legend. The notation employed is (b, l), where b is the band
index and l is the replica index. In (e), (f) a perfect match is found by comparing the direct solution of the TDSE and the solution
based on the t− t ′ formalism.

panels, respectively. The quadratic correction produces the most important part of the shift of the
quasi-energies with the pulse, due to the contribution of the first term in Q(0) in (47a), which is proportional
to c2. This is clearly visible in panel 10(a). However, the evolution of the Floquet coefficients is almost trivial,
with a slight shift of the occupation towards the sidebands (0,±1) (see panel 10(c)). The obtained evolution
is mainly given by a phase which is not visible in the absolute value of the wavefunction plotted in
panel 10(e). On the other hand, as shown in the right panels of figure 10, the model with only trigonal
warping terms clearly encodes the main part of the sideband evolution. The coupling of the bands is indeed
produced by this term, which affects both the quasi-energies (see panel 10(b)), and the expansion
coefficients (see panel 10(d)).

Having elucidated the importance of the trigonal warping term in enabling the transitions between
sidebands, we study the full Floquet–Bloch spectrum under linearly polarised Gaussian pulses. The results
are plotted in figure 11, which shows the projection of the expansion coefficients of the t− t ′ basis over the
quasi-energies for three instants of the time evolution corresponding to t/T= {−0.5,0,1}. Further time
snapshots are plotted in figure F2. In the Floquet–Bloch spectrum, the main effect of the driving is indeed the
shift of the Dirac cone towards higher energies. In addition, the replicas (0,±1) are populated by the pulse,
as expected from figure 9(c), leading to a non-zero amplitude when the pulse is over. Within the full band
picture it is also easier to interpret the avoided band crossings generated for vkx/ω = 0.82 and shown in
figure 9(b). These couplings cause indeed the permutation of the valence and conduction bands due to the
reshaping of the Dirac cone caused by the trigonal warping term. At the crossing points, an extremely small
gap is obtained, as already discussed by the commutator relation (48), and thus the band switch is actually
achieved by a change in the band type.

Finally, it is interesting to compare the effect of the linearly polarised pulse in the two models studied,
i.e. the linear Dirac and the model for Bi2Se3 surface states, both in the regime of linearly polarised irradiation
and with the momentum kx defined in the same direction of the pulse polarization. In the linear Dirac
model, the occupation of the Floquet replicas given by |cα(t)|2 is independent of kx. This is caused by the fact
that the dynamics is only a phase gain, proportional to the external pulse amplitude, which is constant for all
momenta in the direction of the polarisation of the light. In the linear Dirac model, the band crossings that
appear in the Floquet–Bloch spectrum do not show hybridisation due to the absence of coupling between
opposite band replicas. The coupling between replicas is achieved in the linear Dirac model by breaking the
collinearity of the momentum with the linear pulse polarisation or by considering a circularly polarised light.

On the other hand, in the modified Dirac Hamiltonian describing the Bi2Se3 surface states, all band
crossings are avoided, i.e. gapped, due to the hybridisation generated by the higher order terms in the
momentum. The quadratic correction produces a trivial displacement of the bands, while the trigonal
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Figure 10. Floquet quasi-energies (a), (b), expansion coefficients (c), (d) and evolution of wavefunction components (e), (f) as a
function of time for the quadratic Dirac model and the trigonal warping Dirac model in the left and right panels, respectively. The
other parameters are fixed to vkx/ω = 0.82, ky = 0, τ/T= 1 and evAi/(h̄ω) = 4. In (a), (b) the colour code distinguishes the
quasi-energies with from the same replica and the valence (conduction) band is denoted by a continuous (dotted) line. In (c), (d)
only the non-zero expansion coefficients are plotted, corresponding to the replicas indicated in the legend. The notation
employed is (b, l), where b is the band index and l is the replica index.

Figure 11. Expansion coefficients cα(t) projected over the Floquet spectrum for three times t/T= {−0.5,0,1}, in panels (a), (b)
and (c), respectively. The considered pulse is linearly polarised with τ/T= 1.5 and maximum amplitude evAx/(h̄ω) = 4. The
initial state considered is the valence eigenstate of H0(kx,ky = 0). The spectrum is plotted for ky = 0.

warping term couples the two bands creating avoided band crossings for kx further away from the Dirac
point. The occupation of the Floquet sidebands is then momentum dependent and |cα(t)|2 indicates a shift
between bands in the case of avoided crossings. However, even if the phenomenology is more complex, the
Floquet–Bloch spectrum gives a similar result to the linear Dirac model (for example, compare figures 3
and 11). In fact, for an initial valence state, in both cases the occupancy is mainly distributed between the
originally occupied valence band and the valence sidebands.

4. Conclusion

In this paper we have implemented the t− t ′ formalism for Floquet–Bloch Hamiltonians. Within this
formalism, both the notion of time evolution and the concept of (emerging) Floquet sidebands are merged
to describe the time-dependent driving and associated dynamics of Bloch states. In particular, this formalism
can be implemented for any model with time-periodic coupling, even if it cannot be easily factorised into an
envelope function and a periodic part. Thanks to the standard Fourier expansion employed, the
computational cost of the implementation can be minimised by analysing the support of the coupling in the
Fourier decomposition. In addition, a clever choice of the time evolution parameter η could significantly
speed up the calculations, as discussed in the appendix E.
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We have applied this previously derived formalism to two examples: effective Dirac systems with linear
dispersion subject to linearly and circularly polarised pulses, and the modified Dirac model, accounting for
trigonal warping and describing the Bi2Se3 surface state. Starting from the results of the periodic driving in
the usual Floquet formalism, short Gaussian pulses are described within the extended t− t ′ basis, yielding
good agreement with corresponding results from the direct integration of the TDSE. The linear Dirac model
is analysed as a valuable simple but fundamental example that can be directly integrated in the case of linear
polarisation. The t− t ′ formalism then offers a simple interpretation of the phase acquisition due to the
external pulse in terms of transitions between sidebands of the same band type, independent of the
momentum. On the other hand, the case of circularly polarised pulses in the linear Dirac model is described
by couplings and corresponding transitions between radiation-dressed conduction and valence sidebands.

In the case of Bi2Se3 surface states, already the linearly polarised pulse generates couplings between the
valence and conduction bands leading to avoided crossings. In the vicinity of these gaps, the evolution within
the expansion coefficient picture leads to a time-dependent shift of the occupancy between replicas from
opposite bands. By solving the Floquet–Bloch spectrum within the t− t ′ formalism, it is then possible to
interpret the evolution as a redistribution of the occupancy to the upper and lower sidebands.

In conclusion, the results suggest that the t− t ′ method is a powerful tool for interpreting the dynamics
under pulsed ultrafast periodic driving in an auxiliary Floquet basis. In particular, it is possible to compute
the Floquet–Bloch spectrum and to interpret the time evolution of the states as a time-dependent occupation
of the Floquet sidebands. This allows a more direct comparison with tr-ARPES experiments while taking into
account the underlying physics of mapping the Floquet–Bloch spectra as a function of time. In particular, we
provide a systematic and quantitative analysis of the emergence and dynamical formation of Floquet
sidebands for the topological insulator Bi2Se3, in line with very recent experiments demonstrating the
built-up of Floquet–Bloch bands at topological insulator surface states [22]. While in these experiments
other light–matter interaction effects may play a role, the t− t ′ Floquet formalism, as described in our work,
should be very helpful to unravel the essential physics.
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Appendix A. Expansion of the Floquet–Fourier Hamiltonian

As long as the expansion coefficients fb are determined by the projection over the basis and the driving
frequency ω is a known quantity, the solution of the TDSE (2) is reduced to the determination of the Floquet
states |ub(t)⟩ and the quasi-energies ξb.

A common strategy for this is to exploit the periodic properties of |ub(t)⟩ and perform a discrete Fourier
decomposition in terms of the harmonics of the driving frequency as

|ub (t)⟩=
∞∑

m=−∞
e−imωt |u(m)

b ⟩ , (A.1)

with |u(m)
b ⟩ themth Fourier coefficient. Using (3a) as an ansatz of the TDSE (2), the following expression is

obtained as a function of the Fourier coefficients

ξb |u(m)
b ⟩=

∑
n

[
1

T

ˆ
T
dtHper (t)e

i(m−n)ωt −mh̄ωδm,n

]
|u(n)b ⟩ , (A.2)
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whith δm,n = (1/T)
´
T dt e

i(m−n)ωt. The former expression can be interpreted as an eigenvalue equation in the
Fourier space as [32]

ξb |u(m)
b ⟩=

∑
n

HF
mn |u

(n)
b ⟩ , (A.3)

where HF
mn corresponds to the effective Floquet Hamiltonian defined by the quantity inside the square

brackets in (A.2). Note that there is no time dependence in the effective Floquet Hamiltonian due to the
integral over one period.

By writing the effective Hamiltonian in matrix form, the HF is represented by an infinite matrix of d× d
blocks, where d is the size of the Hilbert space ofHper(t). In this matrix, the diagonal blocks are given byH0

with a shift of−mh̄ω, while the upper and lower diagonal blocks are the Fourier transform terms of V(t).

Although the Fourier series considers infinite modes, the fact that each |u(m)
b ⟩ has a support on a limited

range of Fourier modes allows the truncation ofHF to a finite number of Fourier harmonics. The accuracy of
the truncation depends on the Fourier transform of V(t) as well as on the localization of the states in Fourier
space. However, by increasing the size of the Fourier space, it is possible to obtain an accurate result for the
first Brillouin zone.

Appendix B. Comments on equation (7)

The photoelectron spectroscopy is a pump–probe experimental setup, in which an intense radiation pumps
the system into an excited states that, after a delay time, is subjected to a weak probe pulse. The
photo-electrons generated by this second pulse are then detected with energy and angle resolution.

The photoelectron spectroscopy intensity is related to the transition probability between a scattering
photo-electron state |χp(tf)⟩ with momentum p at tf and a given state |Ψ0(ti)⟩ at time ti such that the
transition matrix element is

Mp

(
tf, ti
)
= ⟨χp

(
tf
)
| Udriving

(
tf, ti
)
⟩Ψ0 (ti) , (B.1)

where Udriving describes the evolution operator of the external fields, in this case the pump and probe
drivings [32]. The transition probability is then P(p) = |Mp(tf, ti)|2 and the intensity I is proportional to
such quantity.

If the effect of the probe on the states is neglected, the former expression leads to the simplified case of

P(Ω) =

∣∣∣∣ˆ ∞

−∞
dt eiΩt|ψ (t)⟩ψ (0)⟩

∣∣∣∣2 , (B.2)

that is the Fourier transform of the projection on the initial state |ψ(0)⟩ of the solution of the TDSE |ψ(t)⟩,
considering only the pump driving.

Appendix C. Derivation of equation (16)

For completeness we include here the steps to derive equation (16) from the subsitution of expression (15)
in (9).

ih̄
d

dt

(∑
α

cα (t) |uα (a(t) , t)⟩

)
=Hpulse (a(t) , t)

(∑
α

cα (t) |uα (a(t) , t)⟩

)
. (C.1)

The LHS can be written as:

ih̄
∑
α

(
dcα (t)

dt
|uα (a(t) , t)⟩+ cα (t)

∂|uα (a(t) , t)⟩
∂a

da

dt
+ cα (t)

∂|uα (a(t) , t)⟩
∂t

)
. (C.2)

At a fixed a(t)≡ a, theHpulse(a, t) is time-periodic and the instantaneous Floquet states |ub(a, t)⟩ fulfill, by
definition, see (3b)

ih̄∂t
(
e−iξb(a)t/h̄|ub (a, t)⟩

)
=Hpulse (a, t)

(
e−iξb(a)t/h̄|ub (a, t)⟩

)
, (C.3)

where ∂t ≡ ∂/∂t. By replacing the definition of |uα(a, t)⟩, see (13), and ξα, see (14), we obtain from the
previous expression:

e−iξα(a)t/h̄ [ξα|uα (a, t)⟩+ ih̄∂t|uα (a, t)⟩] =Hpulse (a, t)e
−iξα(a)t/h̄|uα (a, t)⟩ , (C.4)
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leading to

ih̄∂t|uα (a, t)⟩=−ξα|uα (a, t)⟩+Hpulse (a, t) |uα (a, t)⟩ . (C.5)

By replacing this result in the last term of (C.2) we can write (C.1) as:

∑
α

[(
ih̄
dcα (t)

dt
− cα (t)ξα (a(t))

)
|uα (a(t) , t)⟩+ ih̄cα (t)

∂|uα (a(t) , t)⟩
∂a

da

dt

]
= 0 , (C.6)

where we have cancelled the term proportional toHpulse since it was equal in the LHS and RHS. Finally, we
employ the completeness relation of the extended Hilbert space, which, is written as:∑

α

|uα (a, t)⟩⟨uα (a, t ′) |= TδT (t− t ′) , (C.7)

where δT is the T−periodic delta function. We can employ it to express the last term in (C.6) as

∂a|uα (a(t) , t)⟩=
∑
β

ˆ T

0

dt ′

T
|uβ (a(t) , t)⟩⟨uβ (a(t) , t ′) |∂a|uα (a(t) , t ′)⟩ . (C.8)

Notice that in the last equation we restore the time-dependence of a→ a(t) such that t acts as a parametical
value, independent from the time-variable employed in the integral. By replacig the previous result in (C.6)
and subsituting the definition of Gtt′

αβ given by (17b), expression (16) is obtained.

Appendix D. Derivation of equation (29b)

For simplicity we omit the dependency on the momentum k in the following expressions. On the other hand,
the dependence of η(t) is going to be explicitly indicated: if η(t)means the time-dependence is considered,
otherwise η is going to be treated as a parameter. The starting point is the TDSE formulated for the
Hamiltonian Ĥ(η(t), t) in (D.1), the decomposition given by (27) and the general property of the Floquet
states, equation (D.2):

ih̄
d|ψ (t)⟩

dt
= Ĥ(η (t) , t) |ψ (t)⟩ , (D.1)

i∂t|uα (η, t)⟩=
[
−ξα (η)+ Ĥ(η, t)

]
|uα (η, t)⟩ (D.2)

Combining those two equations it is obtained:

ih̄
dcα
dt

= ξα (η (t)) cα − i
∂|uα (η (t) , t)⟩

∂η

dη (t)

dt
cα , (D.3)

Next, the last term of (D.3) is arranged in a more compact form employing the completeness relation of the
Floquet states, similarly to steps followed to get equation (C.8)

−i
∂|uα (η (t) , t)⟩

∂η
=
∑
β

ˆ T

0

dt ′

T
|uβ (η (t) , t)⟩⟨uα (η (t) , t ′) |∂η|uα (η (t) , t ′)⟩ , (D.4a)

=
∑
β

Ĝtt ′

αβ (k,η (t)) |uβ (η (t) , t)⟩ , (D.4b)

where we have defined

Ĝtt ′

αβ (k,η)≡
ˆ T

0

dt ′

T
⟨uα (k,η, t ′)⟩∂ηuβ (k,η, t ′) . (D.5)

Finally, employing the definition of the Fourier modes given by (23) we can re-write (D.5) as:

Ĝtt ′

(b,l)(b ′,l ′) (k,η) =
∑
m

〈
u
(m+l−l ′)
b (k,η)

∣∣∣∣∂ηu(m)
b′ (k,η)

〉
, (D.6)

where we have used again δm,n = (1/T)
´
T dt e

i(m−n)ωt.
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Appendix E. Numerical implementation

This appendix is devoted to brief comments on the numerical implementation of the t− t ′ formalism. The
full code is available in the repository [49].

The first important point, already emphasised in the text, is the availability of an (analytical) insight into
the Fourier expansion. This allows a minimal expansion of the Hilbert space in the Fourier modes for the
numerical implementation. Compared to the direct solution of the TDSE, the t− t ′ formalism indeed
enlarges the Hilbert space required by the Fourier expansion. However, the size of the Floquet–Fourier space
can be easily controlled by computing the Fourier expansion of the pulse-induced couplings in the
Hamiltonian, theWi terms in (35) and (45). In this way, the support on the Fourier replicas of the
eigenvectors of the Floquet–Fourier Hamiltonian can be easily identified by the number of replicas coupled
by the Qi terms, equations (38) and (47).

Apart from the size of the Hilbert space of the Floquet–Fourier expansion, since the evolution is written
in terms of the parameter η, it is indeed possible to optimise the numerical calculations by considering η(t)
functions that lead to the same η values for different times and maximum amplitudes. In fact, one of the
more expensive parts of the calculation is solving the eigenvector problem for the Floquet Hamiltonian,
which is done at fixed η. Nevertheless, different η(t) functions can lead to the same values of η, so the
diagonalisation can be reused for a different set of parameters if η(t) is conveniently defined.

The numerical implementation employed in this work favours the analytic insight and the pedagogical
approach more than the numerical cost-effectiveness. The code is written in python, mainly employing
NumPy built-in functions and the symbolic calculations of the Fourier expansions are done in SymPy [50].
However, the code provided can be easily tailored for the numerical optimization of a specific Hamiltonian.
In particular, the symbolic part can be speeded up more directly by writing the NumPy functions needed for
the specific model under consideration without using symbolic integral expressions. The code is structured
in classes that match the main definitions of the article, the correspondence between the Hamiltonians
defined in the text and the code classes are the following:

• Hamiltonian takes as input a symbolicHamiltonian and the terms of the vector potential in symbolic form.
It corresponds to the definition of the HamiltonianHper(t) in (1). Its methods fourier_elements(n) and
fourier_elements_lambify compute, for a fixed amplitude and parameter set, the Fourier expansion
elements Qi for i = 1, ..n in a symbolic expression and a NumPy function form, respectively. The time evol-
ution operator U(t) of (31) is defined by the method time_evolutionU.

• Hamiltonian_FloquetFourier takes as input a Hamiltonian class and corresponds to the evaluation
of the Fourier expansion of the Floquet Hamiltonian. The method fourier_hamiltonian returns the
Floquet–Fourier HamiltonianHmn from (5) in matrix form and fourier_spectrum evaluates the Floquet
spectrum given by (14).

• Hamiltonian_ttp is the class for defining the t− t ′ Hamiltonian according to (21). The method
ifs_basis computes the instantaneous Floquet basis for the t− t ′ decomposition in (15) and
ifs_Chamilt corresponds to the Hamiltonian of the coefficients cα(t) in (17a).

Apart from the classes for the Hamiltonian expressions, there are two main auxiliary classes:

• ObservablesFloquet evaluates some relevant observables in the static Floquet picture, such as the
time-averaged density of states with timeAveragedDOS and the photoelectron spectroscopy intensity
(photoelAmp) according to (7).

• IFS_solver solves the evolution of the cα(t) coefficients of the t− t ′ formalism by integrating the dif-
ferential equation with the method c_t and labelling the replicas according to the convention in (26) in
tag_fqlevels.

Appendix F. Supplemental figures

Here we provide additional figures referred to in the main text, representing further parameter regimes.
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Figure F1. Expansion coefficients cα(t) projected over the Floquet spectrum for three instants of time
t/T= {−1,−0.5,0,0.5,1,2}, in panels (a) to (f). The pulse considered is circularly polarized pulse with τ/T= 1 and maximum
amplitude evAx/(h̄ω) = 1. The initial state considered is the valence eigenstate of H0(kx,ky = 0). The spectrum is plotted for
ky = 0.

Figure F2. Expansion coefficients cα(t) projected over the Floquet spectrum for three instants of time
t/T= {−1,−0.2,0,0.6,1,2}, in panels (a) to (f). The pulse considered is linearly polarized with τ/T= 1.5 and maximum
amplitude evAx/(h̄ω) = 4. The initial state considered is the valence eigenstate of H0(kx,ky = 0). The spectrum is plotted for
ky = 0.
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