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Super–Bloch oscillations with modulated interaction
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We study super–Bloch oscillations of ultracold atoms in a shaken lattice potential, subjected to a harmonically
modulated mean-field interaction. Usually, any interaction leads to the decay of the wave packet and its
super–Bloch oscillation. Here, we use the phases of interaction and shaking with respect to the free Bloch
oscillation as control parameters. We find two types of long-living cases: (i) suppression of the immediate
broadening of the wave packet, and (ii) dynamical stability of all degrees of freedom. The latter relies on the
rather robust symmetry argument of cyclic time [Gaul et al., Phys. Rev. A 84, 053627 (2011)].
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Experiments with ultracold atoms in optical lattices are an
ideal testing ground for many problems of condensed-matter
physics [1,2]. In addition to good measurement access, these
systems offer flexible manipulation of the system parameters,
which opens the way to new perspectives and effects. One
of the most prominent examples is the observation of Bloch
oscillations (BOs) of cold atomic gases [3] and of Bose-
Einstein condensates (BECs) [4] in optical lattices, subjected
to an external force F . The semiclassical explanation for BOs is
the following: The quasimomentum h̄k increases linearly with
time, but because of the dispersion relation of a tight-binding
model with hopping amplitude J and lattice period a, E(k) =
2J [1 − cos(ka)], the group velocity is a sinusoidal function of
time. The particle does not follow the potential gradient but
stays localized and performs an oscillatory motion.

By optical means or by magnetic levitation, the lattice
potential can be shaken with frequency ω. This results in a
renormalization of the hopping amplitude, which can even be
suppressed, the so-called dynamic localization [5,6]. Semi-
classically, a harmonic shaking F (t) = �F sin(ωt) causes
the quasimomentum h̄k = ∫

dt ′F (t ′) to oscillate rapidly and
to explore k-space regions with renormalized or even neg-
ative effective mass meff(k) ∝ 1/ cos(ka). Time-averaging
cos(ka) leads to the renormalization of the hopping Jeff/J =
J0(�F/ω), where J0 is the Bessel function of the first kind.
Thus, depending on the strength and the frequency of the
shaking, the effective hopping Jeff can be suppressed or even
negative, freezing or inverting the center-of-mass motion.

The modulation of the force around a finite mean value leads
to a superposition of the BO with a slow oscillation of large
real-space amplitude, similar to the one shown in Fig. 1. This
phenomenon is known as quasi-BO [7] or super-BO (SBO)
[8]. It can be explained with a semiclassical reasoning, too:
The quasimomentum performs small oscillations around its
linearly increasing mean value. Then, during one Bloch cycle,
it spends more time in k-space regions with, say, positive
mass than in regions with negative mass, which results in a
drift of the wave packet in the direction of the force. As the
relative phase between BO and shaking changes, the time-
averaged mass becomes negative and the drift gets reversed,
which results in an SBO at the beating frequency.

SBOs have been mostly studied in the linear, noninteracting
case [9,10], but ultracold bosons open more interesting possi-

bilities. Feshbach resonances can be used to arbitrarily change
the s-wave scattering length [11], even time-dependently
[12–14]. Generically, the interaction leads to dephasing and
decay of the wave packet. However, the interplay of modulated
interactions and BOs has already been investigated, and an
infinite family of (harmonic) modulations that lead to a
periodic time evolution of the wave packet has been found
[15–17]. Here, we consider SBOs in the presence of a
modulated s-wave scattering length. This problem is more
complex because already the linear problem contains two
frequencies and two phases from the BO and the shaking,
respectively. In the remainder of this Brief Report, we tackle
the problem with a full integration of the discrete Gross-
Pitaevskii equation and a cyclic-time argument similar to that
of Ref. [17], for one particular phase of the shaking. Afterwards
we study frequencies and phases not covered by the cyclic-time
argument by means of collective coordinates of a Gaussian
wave packet and linear stability analysis of the infinite wave
packet.

Model. Our starting point is the mean-field tight-binding
equation of motion as in Refs. [15–17], but now the tilt F may
be time dependent:

ih̄�̇n = −J (�n+1 + �n−1) + F (t)an�n + g(t)|�n|2�n.

(1)

The wave function �n is normalized to one, implying that the
time-dependent interaction parameter g(t) contains the total
particle number. We choose the force as

F (t) = F0 + �F cos(ωt + φF ). (2)

The mean value F0 defines the Bloch frequency ωB = F0a/h̄.
This and the frequency of the modulation ω are the two
frequencies of interest. For concreteness, we choose a fixed
frequency ratio ω/ωB = l/ν = 4/5 for the rest of this Brief
Report. Thus, the super–Bloch period TSBO is five Bloch peri-
ods. We now search for suitable modulations of g(t) that allow
a periodic time evolution of Eq. (1). A constant interaction
parameter leads sooner or later to a decay of the SBO [8],
but harmonic modulations around zero may counteract this
effect [15]. We choose the simplest commensurate modulation,

g(t) = g0 sin(ωBt/ν + φ), (3)
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FIG. 1. (Color online) Stable interacting SBO. The initial wave
function has Gaussian shape with width σ0 = 20a and quasimo-
mentum p(0) = h̄π/2a. Force (2) with F0 = 0.2J/a, �F = 0.6F0,
l/ν = 4/5, and φF = 0; interaction (3) with g0 = 1, φ = 0. (a)
Real-space density |�n(t)|2 from the integration of Eq. (1). (b) Time
evolution of some magnitudes of interest: the interaction g(t), the
inverse mass term ∼ cos(pa), and the variation of the real-space width
�σ (t) = σ (t) − σ (0). The gray circles mark the points of symmetry
used in the cyclic-time formalism for SBOs.

throughout the paper and we vary only the phase φ. Figure 1(a)
shows the time evolution of the wave function for φF = φ = 0,
a particular choice of parameters for which SBOs turn out to
be stable.

In general the SBO decays with time. This decay is most
conveniently observed via the broadening of the wave-function
momentum distribution, observed via the inverse participation
number (IPN) of Fourier modes,

IPN =
∑

k

|�k|4. (4)

A decrease of this number means momentum broadening
and decay of the wave packet. Figure 2 shows the variation
�IPN(T ) = IPN(T ) − IPN(0) after a certain time T for φF =
0, − π/2 as a function of the interaction phase φ. For most of
the phases, the IPN goes down, meaning that the wave packet
broadens. Figure 2(a) shows that for φF = 0 the phase φ = 0
from Fig. 1 is one of the two stable points, where the IPN stays
constant. Similarly, in the case φF = −π/2 of Fig. 2(b), two
“stable” points arise as well. However, their stability behavior
is different and will be explained in what follows.

Cyclic-time formalism for SBOs. We express the discrete
wave function �n of Eq. (1) in terms of a continuous wave
function A(z,t):

�n(t) = A(na − x(t),t)eip(t)na/h̄+iφ(t). (5)

With the semiclassical equations ṗ = −F (t), ẋ = vg =
2Ja sin(pa/h̄)/h̄, and h̄φ̇ = 2J cos(pa/h̄), the envelope func-
tion obeys the nonlinear Schrödinger equation,

ih̄Ȧ = −J cos(pa/h̄) A′′ + g(t)|A|2A, (6)

where higher derivatives of A have been neglected. The
factor in front of the second derivative takes the role of
the mass term J cos(pa/h̄) = h̄2/2m(t). Taking into account
the commensurability of the frequencies ω and ωB, we express
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FIG. 2. (Color online) Relative change of the momentum IPN as
a function of the phase φ for (a) φF = 0 and (b) φF = −π/2. Discs
(with lines as a guide to the eye) are as follows: results from the
integration of Eq. (1) after integration times T = TSBO, 15TSBO, and
30TSBO (from top to bottom). (Solid line) Result from the collective
coordinates theory (11). Regardless of a possible initial increase, the
IPN always goes down in the long run, except for those points where
�IPN = 0.

the time dependence in terms of the slower time τ = ωBt/ν,
which increases by 2π during one super–Bloch period TSBO =
νTB. After integrating the force (2), we find the inverse mass
term as

cos(pa/h̄) = sin

{
ντ + a �F

h̄ω
[sin(lτ + φF ) − sin φF ]

}
,

(7)

where we have chosen the initial condition such that a
p(τ = 0) = πh̄/2a. This can always be achieved by choosing
the origin of time.

We know from previous works [15–17] that BOs can exist
in the presence of suitably tuned AC interactions. Now, we
construct a similar cyclic-time formalism for SBOs. The basic
idea is to separate all terms of Eq. (6) into the form η̇f (η),
where η is a harmonic function of τ and f an arbitrary function.
Then η̇ is eliminated and Eq. (6) is solved as a function of η

only. As η is a periodic function of t , the time evolution of A is
periodic too, and we have indeed found a case of stable SBOs
in the presence of a nonzero interaction g(t).

The inverse mass term (7) can only be brought into the
desired form η̇f (η) if φF = 0 [or any phase shift that allows
for a common node of sin ντ and sin lτ ]. Then,

cos(pa/h̄) = sin(τ )F(cos τ ), (8)

which is the most general 2π -periodic function that respects
the odd symmetry with respect to τ = 0 mod π . This de-
termines η = cos τ . Thus, the left-hand side of Eq. (6) is
Ȧ = η̇∂ηA. Finally, we may choose any modulated interaction
of the form g = η̇g̃(η). In particular, g(t) = g0 sin(F0t/ν),
i.e., Eq. (3) with φ = 0 fulfills the cyclic-time condition. The
symmetries involved in this argument can be observed in the
lower panel of Fig. 1: g(t) and cos(p(t)a/h̄) share the nodes of
η̇, marked with gray circles, and are odd with respect to these
points. All physical quantities, e.g., the width variation �σ ,
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are functions of η only and are thus even with respect to the
mentioned points.

So far, we have explained the stability observed in Fig. 1 and
the stable points of Fig. 2(a). It turns out that the phase φF =
−π/2 of shaking considered in Fig. 2(b) cannot be written in
the form required by the above cyclic-time argument, because
the inverse mass term cos(pa/h̄) does not exhibit points with
odd symmetry. Nevertheless, there are two particular phase
shifts, φ ≈ −0.26π and φ ≈ 0.74π , where the broadening
of the wave packet is suppressed. One can understand this
using a collective-coordinates theory. The idea is to reduce the
complexity of the problem by parametrizing the wave function
by only two coordinates, its position x and its width

√
w

[15,18]:

�n(t) = 1
4
√

w
A

(
na − x√

w

)
eipna/h̄+ib(na−x)2/h̄. (9)

A(u) is a continuous normalized Gaussian wave function with
variance one. The equations of motion for the collective coor-
dinates, x and w, and their conjugate momenta, p and b, are

ṗ = −F (t), (10a)

h̄

J

ẋ

a
= 2a sin(pa/h̄)

[
1 − 1/4 + 4b2w2/h̄2

2w/a2

]
, (10b)

a2

J
ḃ = 1 − 16w2b2/h̄2

4w2/a4
cos(pa/h̄) + a3g(t)

8
√

πJw3/2
, (10c)

h̄ẇ

J a2
= 8

wb

h̄
cos(pa/h̄). (10d)

A necessary condition for stability within the
collective-coordinates approximation is that w(t) returns to
its initial value after a full super–Bloch period TSBO. In this
regard, we can compute analytical results in the limit of a
wide wave packet w(t) ≈ σ 2

0 � 1. Then, Eqs. (3) and (10c)
give b(t) ≈ −aνg0/[8

√
πσ 3

0 ωB] cos(ωBt/ν + φ). With (10d),
and assuming that |l − ν| = 1, this yields∫

TSBO

dt
ẇ

w
≈ (l − ν)

√
πa3Jg0

σ 3
0 (h̄ωB/ν)2

J1

(
δFν

l

)
sin (φ − φ0) ,

(11)

with φ0 = (l − ν) [φF + a�F sin(φF )/h̄ω]. The Bessel
function of the first kind, J1, is not to be confound with
the hopping J . Depending on the phase φ of the interaction, the
wave packet contracts or spreads after a full super–Bloch cycle
TSBO. This is also reflected in the IPN shown in Fig. 2. The
dynamics can be strictly periodic only for φ = φ0 mod π . With
the values l = 4, ν = 5, φF = −π/2, and a�F = 0.75h̄ω,
this yields φ0 = 0.74π , in agreement with Fig. 2(b).

In Fig. 3, the momentum-space portrait of SBOs is shown
for different phases of the shaking and of the interaction.
Panel (a) shows an unstable case of sine shaking with
immediate broadening of the momentum distribution. In panel
(b) the phase of the interaction is adjusted as required by
the collective-coordinates criterion of Eq. (11) and it shows
the behavior presented by the two apparently “stable” points
in Fig. 2(b). Here, the immediate broadening is indeed
suppressed; but on a longer time scale (≈20TSBO = 100TB),
side peaks grow far from the central wave packet. This is an
indicator for a dynamical instability and does not happen in

 0

 5

 10

 15

 20

 25

 30

-0.5  0  0.5 -0.5  0  0.5 -0.5  0  0.5

 0.0001

 10-5

 10-6

 10-7

 10-8

 0.001

 0.01

 0.1

 1

t

TSBO

(k − p)a(k − p)a(k − p)a

|Ψk|2

(a) (b) (c)

FIG. 3. (Color online) Momentum-space portraits in the reference
frame of the center of momentum p for shaking (2) and interaction
(3), with σ0 = 20a, F0 = 0.2J/a, �F = 0.6F0, g0 = 1. (a) Unstable
sine shaking φF = −π/2 with φ = 0; (b) sine shaking with phase
φ = −0.26π adjusted according to Eq. (11); (c) stable case of Fig. 1,
φF = 0, φ = 0.

the stable case with cosine shaking (see Fig. 1), whose k-space
portrait is shown in Fig. 3(c) for comparison. In this case,
there is neither immediate broadening nor an instability. The
extremely small residual broadening, is due to effects beyond
the approximation made in Eq. (6).

Linear stability analysis. Collective coordinates rely on
a smooth Gaussian profile of the wave function and cannot
describe features on short length scales. We close this gap
with a linear stability analysis of the infinitely extended Bloch
oscillating wave packet. The method is the same as in Ref. [15],
only that cos(F t) is replaced with cos(pa/h̄) from Eq. (7) and
the period with the super–Bloch period. For each plane-wave
modulation q of the wave function, the monodromy matrix is
obtained by integration of the (linearized) equations of motion
over one period with two different initial conditions. The mode
q is stable if �q , which is half the trace of the monodromy
matrix, is less or equal to one. Conversely, it is unstable if
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FIG. 4. (Color online) Stability prediction �q (black, stable;
white, unstable) for fluctuation mode q = k − p as a function of the
interaction phase φ for cosine shaking φF = 0 (a) and sine shaking
φF = −π/2 (b). The dashed green line indicates the phase φg taken
in Figs. 3(b) and 3(c), respectively.
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|�q | > 1 [19]. Figure 4 shows maps of stability for both
cases of primary interest, cosine shaking (φF = 0) and sine
shaking (φF = −π/2). In the first case, for values φ = nπ ,
n ∈ Z, all modes q remain stable, in concordance with the
cyclic-time argument and with Fig. 2(a). In the second case, the
stable phase of collective coordinates agrees with the stability
for small values of q only, and for larger values instabilities
occur. Notably, the first region of instability is located around
q = 0.5. This is just the region where the instability occurs in
the full integration, as shown in Fig. 3(b).

Conclusions. We have studied the stability of commen-
surate super–Bloch oscillations under a time-dependent in-
teraction parameter that is modulated with the super–Bloch
frequency. The phase of the interaction can always be adjusted
such that the direct broadening of the width is suppressed [see
Fig. 2 and Eq. (11)]. But there are more degrees of freedom,
which may be subject to dynamical instability [Fig. 3(b)].
These can be stabilized by fulfilling the cyclic-time argument
[Fig. 3(c)].

The dynamics of BOs and SBOs strongly depends on the
relative phase evolution between neighboring sites [4,8]. This
means that interactions distort the density profile of the driven
Bose-Einstein condensate and lead to the destruction of such
oscillations in general. Therefore, our proposal to tune the
atomic interaction time dependently is important to reduce
this effect and to allow for the detection of such oscillatory
dynamics of a condensate. The results of this work can be
considered to improve the quality of SBOs in order to be used
to engineer matter-wave transport over macroscopic distances
in lattice potentials in a more reliable way, which should also
be relevant for atom interferometry [20].
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