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a b s t r a c t

We introduce three deformations, called α-, β- and γ -deformation
respectively, of a N-body probabilistic model, first proposed by
Rodríguez et al. (2008), having q-Gaussians as N → ∞ limiting
probability distributions. The proposed α- and β-deformations are
asymptotically scale-invariant, whereas the γ -deformation is not.
We prove that, for both α- and β-deformations, the resulting de-
formed triangles still have q-Gaussians as limiting distributions,
with a value of q independent (dependent) on the deformation pa-
rameter in the α-case (β-case). In contrast, the γ -case, where we
have used the celebrated Q -numbers and the Gauss binomial co-
efficients, yields other limiting probability distribution functions,
outside the q-Gaussian family. These results suggest that scale-
invariance might play an important role regarding the robustness
of the q-Gaussian family.
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1. Introduction

It is well known that the (properly centered and rescaled) sum of N independent (or weakly
dependent) random variables with finite variance approaches a Gaussian distribution in the N → ∞

limit [1]. This fundamental classical result, known as the Central Limit Theorem (CLT), is at the
basis of the ubiquity of Gaussian distributions in Nature. The classical CLT, however, cannot be
applied to a set of strongly correlated random variables. Therefore, in the context of nonextensive
statistical mechanics [2], it has been argued the existence of a generalized CLT for random variables
correlated in a specific way [3,4], called q-independence. Alternative CLTs, based on a different kind
of correlations [5] or on exchangeability [6], have also been proposed in the literature. In all these
theorems, the (properly centered and rescaled) sum of N correlated random variable has, in the
N → ∞ limit, a q-Gaussian distribution Pq(x),

Pq(x) :=


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√
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e−x2 q = 1,
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1 − q

π

3 − q
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Γ


3−q
2−2q


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
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1−q

 e−x2
q q ∈ (−∞, 1),

(1)

where q is a real parameter depending on the nature of the correlations, and the q-exponential function
is defined as follows:

exq :=


ex q = 1,

[1 + (1 − q)x]
1

1−q
+ q ≠ 1,

(2)

with [x]+ := x θ(x), θ(x) Heaviside function. In what follows, we will use also the inverse function of
the q-exponential, the q-logarithm, defined as

logq(x) :=


ln(x) q = 1,
x1−q

− 1
1 − q

q ≠ 1,
x > 0. (3)

Like Gaussian distributions, q-Gaussians also are ubiquitous in Nature. Indeed, analytical, experi-
mental and numerical investigations in biology [7], economics [8,9], high energy physics [10], anoma-
lous diffusion processes [11,12], dynamics of many-body classical Hamiltonian systems [13–16], cold
atoms [17–19], dissipative and conservative low dimensional maps [20,21], turbulence [22] among
others,1 have shown that q-Gaussian distributions appear in the probabilistic analysis of many sys-
tems in which long-range interactions are present, or ergodicity lacks. These evidences strongly sup-
port the existence of a generalized CLT involving q-Gaussians.

To investigate the conditions under which such a generalized CLT holds, analytically solvable
probabilistic models yielding q-Gaussian limiting distributions are of paramount importance. In
particular, in [23] a probabilistic model for N correlated binary random variables was introduced,
generalizing the celebrated Leibniz triangle [24]. The proposed model preserves the scale-invariance
property (see Ref. [23] and below for a definition) of the Leibniz triangle and it can be rigorously proved
that this model has q-Gaussians with q ∈ [0, 1] as limiting distributions for N → ∞. Subsequently,
it was shown [25,26] that particular d-dimensional scale-invariant probabilistic models with d ≥ 1

1 For a regularly updated bibliography on nonextensive thermostatistics and related topics, see http://tsallis.cat.cbpf.br/
biblio.htm.

http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
http://tsallis.cat.cbpf.br/biblio.htm
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have, as limiting distributions, Dirichlet distributions for d > 1, whereas for d = 1 q-Gaussians were
obtained. The ultimate relationship between scale-invariance and q-Gaussianity, i.e. the appearance
of q-Gaussians as probability distributions for statistical models in the thermodynamic limit, is not
yet completely clear. In Refs. [23,27] it was already conjectured that (asymptotic) scale invariance
could be possibly a necessary but not sufficient condition, for the emergence of q-Gaussians. Indeed,
in [28] two scale-invariant probabilistic models which are different from the one analyzed here, are
analytically studied, showing a limiting distribution different from a q-Gaussian.

With the aim of shedding further light on this problem, we address here the robustness under small
perturbations of the general one-parameter family of scale-invariant probabilistic models introduced
in [23]. In particular, we investigate the stability of the q-Gaussian family in the space of probability
distributions: this property is indeed fundamental for the existence of a generalized CLT yielding q-
Gaussian distributions in Nature. In this context, exactly solvable probabilistic models are essential
tools for a rigorous study of the type of correlations and the properties required for such generalized
theorem.

We consider two new families of asymptotically scale-invariant triangles, namely the α-triangles
and β-triangles, which generalize the aforementioned family. These deformations are based on the
introduction of two classes of real numbers, the α-numbers and β-numbers respectively, in the same
spirit of the Q-numbers, typical of the Q -deformations of Lie groups and algebras [29]. As we shall see,
despite the deformation, the limiting distributions remain q-Gaussians, but with a value of q which
might depend on the perturbation strength.

To the best of our knowledge, this is the first article addressing, for specific probabilistic models,
the important problemof the robustness of q-Gaussians as attractors, a fundamental property involved
in the existence of a generalized CLT.

The aforementioned deformations may be considered as nontrivial ones, since there is no a priori
guarantee that an arbitrary deformation should preserve the same q-Gaussian behavior for large
values of N . As a counterexample, we introduce and study here an alternative deformation, that
we call γ -deformation, based on the classical definition of Q -number [29] used in combinatorics.
This deformation does not generically preserve q-Gaussian forms for the limiting distributions. Since
scale-invariance is violated by the γ -deformation, in contrast with the α- and β- ones, a possible
conjecture might emerge on the necessity of (at least asymptotic) scale-invariance for q-Gaussianity
(see also [27]).

2. Preliminaries: Leibniz-like triangles as probability models

Let us consider a system with N identical elements, whose states are characterized by binary vari-
ables xi ∈ {0, 1}, i = 1, . . . ,N . Let us introduce also the probability rN,n of having a given config-
uration {x1, . . . , xN} with

N
i=1 xi = n. The probability pN,n of having any configuration such thatN

i=1 xi = n is obtained taking into account the proper degeneracy

pN,n :=


N
n


rN,n. (4)

The set of values rN,n can be organized in a triangle, in such a way that the element rN,n is the nth ele-
ment of the Nth row. We require that the following Leibniz triangle rule (or scale-invariance property)
holds:

rN,n+1 + rN,n = rN−1,n. (5)

The Leibniz triangle r (1)
N,n [24] can be constructed using the Leibniz rule and defining r (1)

N,0 as follows:

r (1)
N,0 :=

1
N + 1

⇒ r (1)
N,n =

1N
n

 1
N + 1

. (6)

TheN → ∞ limiting distribution is the uniform distribution. Considering instead rN,0 = pN , p ∈ (0, 1),
the N → ∞ limiting distribution is a Gaussian distribution, being in this case pN,n =

N
n


pn(1− p)N−n,

i.e., the binomial distribution.
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The aforementioned Leibniz triangle has been generalized in [23]: for ν ∈ N,

r (ν)
N,0 :=

Γ (2ν)Γ (N + ν)

Γ (ν)Γ (N + 2ν)
⇒ r (ν)

N,n =
r (1)
N+2(ν−1),n+ν−1

r (1)
2(ν−1),ν−1

. (7)

The triangle (6) is recovered as the ν = 1 particular case. Remarkably, it has been proved [23] that,
for N → ∞ and ν = 2, 3, . . . , we have2

p(ν)
N,n :=


N
n


r (ν)
N,n

N≫1
∼

2
√

ν − 1
N

Pq1(ν)(x), x := 2
√

ν − 1


n
N

−
1
2


, (8)

where Pq1(ν)(x) is a q-Gaussian with q ≡ q1(ν),

q1(ν) = 1 −
1

ν − 1
< 1; (9)

the subindex 1 will become transparent later on. In the ν → ∞ limit, r (ν)
N,0 → 2−N and q1(ν) → 1 as

expected from the CLT.

3. Asymptotically scale-invariant deformations of the generalized Leibniz triangle

In this Section, we introduce two asymptotically scale-invariant deformations of the probabilistic
model analyzed in [23].

3.1. The α-numbers and the α-triangles

The basis of our construction is the notion of α-number.

Definition 3.1. Given n ∈ N ∪ 0, and α > 0, α ≠ 1, an α-number is the real number defined as
follows:

{n}α := (n + 1)

1 −

1 − α

1 − αn+1


=


nan(α) n ≥ 1,
0 n = 0, (10)

where we have introduced (n ≥ 1)

an(α) :=
n + 1
n


1 −

1 − α

1 − αn+1


α→1
−−→ 1. (11)

The previous definition is such that

{n}1 ≡ lim
α→1

{n}α = n, (12)

so in the α → 1 limit we recover the ordinary numbers.
The following is a generalization of the factorial of a natural number.

Definition 3.2. Given n ∈ N ∪ 0, we shall call α-factorial the number defined as

{0}α! := 1 and {n}α! :=

n
k=1

{k}α = n!
n

k=1

ak(α), n ∈ N. (13)

2 Observe that in
N

k=0

N
k


r (ν)
N,k = 1; this result can be proved using the identity 1

n+1

n
k

−1
=

 1
0 xk(1 − x)n−kdx and the

binomial theorem.
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The ordinary factorial is recovered in the α → 1 limit, {n}1! ≡ limα→1{n}α! = n!. We define now
an extension of the binomial coefficients.

Definition 3.3. Given the nonnegative integers N and n ≤ N , the α-binomial coefficient is defined as


N
n


α

:=
{N}α!

{n}α!{N − n}α!
=


1 if n = 0 or n = N,
N
n

 N−n
k=1

ak+n(α)

ak(α)
1 ≤ n ≤ N − 1.

(14)

The α-binomial coefficients share with the Pascal coefficients the property

N
n


α

=


N

N − n


α
, ∀α.

Again, we recover the ordinary binomial coefficients in the α → 1 limit. In the same fashion as the
Pascal triangle, the α-binomial coefficients can be displayed forming a Pascal α-triangle:

3.1.1. Deformation of the Leibniz-like triangles using the α-numbers
We want now to deform the family of triangles obtained in [23] using the aforementioned α-

numbers. Let us start introducing the Leibniz-like α-triangle as

r (1)
N,n,α :=

1

{N + 1}α


N
n


α

, n = 0, . . . ,N, (15)

which is related to the original Leibniz triangle as

r (1)
N,n,α = µ

(1)
N,n,αr

(1)
N,n, (16)

with

µ
(1)
N,n,α :=



1 for N = 0,
1

aN+1(α)
for N > 0 and n = 0 or n = N ,

1
aN+1(α)

N−n
k=1

ak(α)

ak+n(α)
for N > 0 and n = 1, . . . ,N − 1.

(17)
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In addition, limα→1 µ
(1)
N,n,α = 1. As an illustration, the α =

1
2 instance of family (15) is given by

The product of the Leibniz α-triangle by the Pascal triangle (which takes into account the
degeneracies) does not generically yield a set of probabilities, since

N
n=0


N
n


r (1)
N,n,α ≠ 1.

Nevertheless we can circumvent this difficulty by properly renormalizing the triangle to get a new
one with coefficients

r̂ (1)
N,n,α :=

r (1)
N,n,α

N
k=0

N
k


r (1)
N,k,α

, (18)

and associated probabilities

p̂(1)
N,n,α :=


N
n


r̂ (1)
N,n,α. (19)

The normalized Leibniz α-triangle for α =
1
2 looks like

Following Ref. [23], we can define a two-parametric family of triangles from the Leibniz α-triangle
(15) for α > 0 and ν ∈ N:

r (ν)
N,n,α :=

r (1)
N+2(ν−1),n+ν−1,α

r (1)
2(ν−1),ν−1,α

= µ
(ν)
N,n,αr

(ν)
N,n, (20)
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where, for ν > 1, we have3

µ
(ν)
N,n,α :=

a2ν−1(α)

aN+2ν−1(α)

N−n+ν−1
k=1

ak(α)

ak+n+ν−1(α)

ν−1
k=1

ak+ν−1(α)

ak(α)

=
a2ν−1(α)(α − 1)


αN+2ν

− 1


α(αN−n+ν − 1)(αn+ν − 1)
(N − n + ν)(n + ν)

N + 2ν

ν−1
k=1

ak+ν−1(α)

ak(α)
. (22)

As before, normalization is needed to obtain the family

r̂ (ν)
N,n,α :=

r (ν)
N,n,α

N
k=0

N
k


r (ν)
N,k,α

, (23)

with associated probabilities

p̂(ν)
N,n,α :=


N
n


r̂ (ν)
N,n,α (24)

trivially satisfying
N

n=0 p̂
(ν)
N,n,α = 1.

Observe that triangle (23) does not generically fulfill the scale-invariance condition (5). Neverthe-
less, it is asymptotically scale-invariant, i.e.,

lim
N→∞

n
N ≡η fixed

r̂ (ν)
N−1,n,α

r̂ (ν)
N,n,α + r̂ (ν)

N,n+1,α

= 1. (25)

This follows from the fact that the normalization
N

n=0

N
n


r (ν)
N,n,α has a power-law scaling behavior (as

we will see later by evaluating
N
n


r (ν)
N,n,β for large N), and from the limit

r (1)
N−1+2(ν−1),n+ν−1,α

r (1)
N+2(ν−1),n+ν−1,α + r (1)

N+2(ν−1),n+ν,α

N→∞
−−−→ 1, (26)

obtained using the limit aN
N→∞
−−−→ min{1, α}.

3.1.2. A theorem on the robustness of Leibniz-like α-triangles
In this section, we prove that the family of deformed triangles (23) still possesses a q-Gaussian as

limiting distribution for N → ∞, after proper centering and rescaling. However, the limiting value of
q is different from q1(ν), although not dependent on α.

Theorem 3.1. The family of triangles (20) with ν ∈ (1, +∞) and α ∈ R+
\{0} satisfies the property

N

2


ν − δα,1
p̂(ν)
N,n,α

N≫1
∼ Pqα(ν)(x), (27)

where we have introduced the properly centered and rescaled variable

x := 2


ν − δα,1


n
N

−
1
2


. (28)

3 To obtain Eq. (22) we used the following identities for K ∈ N and a, b ∈ R+:

K
k=1

k + a + 1
k + a

=
1 + a + K

1 + a
,

K
k=1


1 −

1 − a
1 − ak+b


=

ab+K
− aK

ab+K − 1
. (21)
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Fig. 1. Probability distributions (24) and w(ν)
α (x) := logqα (ν)

Pqα (ν)(x)
Pqα (ν)(0)

for ν = 2, N = 104 and different values of α; the derived
asymptotic behavior is also depicted as continuous line for α ≠ 1. The corresponding values of qα(2) are given by Eq. (29).

In Eq. (27), Pqα(ν)(x) is a q-Gaussian with

qα(ν) := 1 −
1

ν − δα,1
=


1 −

1
ν

for α ≠ 1,

1 −
1

ν − 1
for α = 1.

(29)

See Appendix A for the proof.
In Fig. 1 we plot some numerical results both for p̂(ν)

N,n,α and for the q-logarithm

w(ν)
α (x) := logqα(ν)

Pqα(ν)(x)
Pqα(ν)(0)

= −x2, (30)

comparing with the theoretical predictions. Observe that the following relation between qα(ν) and
q1(ν) holds:

1
1 − qα(ν)

=
1

1 − q1(ν)
+ 1. (31)

3.1.3. Entropy
Let us now focus onwhich entropic functional is extensive for the abovemodel. A natural candidate

is in principle the nonadditive entropy [30]

S(ν,α)
qent :=

1 −

N
n=0

N
n

 
r̂ (ν)
N,n,α

qent

1 − qent
. (32)

Using a generalized entropic form [31–33], including the nonadditive entropy as particular case,
in [34] it has been shown that for a wide class of triangles, the number of microstates Ω , as a function
of the system size N , increases according to the law Ω(N) = 2N . This leads to a scenario in which the
only possible value of qent making the entropy (32) extensive for α = 1 is qent = 1, which corresponds
to the Boltzmann–Gibbs entropy. Similar arguments, based on the Laplace–de Finetti theorem, also
yield qent = 1 [35].

The same kind of reasoning of [34,35] applies for the class of models we address here, and,
therefore, also here we expect qent = 1. This has been confirmed by a numerical analysis. In Fig. 2, the
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Fig. 2. Values of the S(2,α)
qent entropy (32) for α =

1
2 versus N for different values of qent .

q-entropy (32) is plotted as a function ofN for the particular case ν = 2 and α =
1
2 . In agreementwith

the above, we find that the value of qent which makes the entropy S(ν,α)
qent extensive is indeed qent = 1.

3.2. The β-numbers and the β-triangles

Let us consider another deformation of the generalized Leibniz triangles introduced in Section 2.

Definition 3.4. Given n ∈ N∪0, and β > 0, β ≠ 1, we shall call β-numbers the real numbers defined
as follows:

[n]β :=


0 if n = 0,

n

1 −

1 − β

1 − βn


+ 1 ≡ n bn(β) if n ≥ 1, (33)

where we introduced

bn(β) := 1 +
1
n

−
1 − β

1 − βn
. (34)

Note that, so defined, the β-numbers are related to the α-numbers as

[n]β = {n − 1}β + 1. (35)

It follows that [n]1 := limβ→1[n]β = n, hence the β → 1 limit recovers the ordinary numbers. The
β-factorial can now be defined as

[0]β ! := 1, [n]β ! :=

n
k=1

[k]β = n!
n

k=1

bk(β), n ≥ 1. (36)

The factorial number is recovered as [n]1! := limβ→1[n]β ! = n!. We can further define the β-binomial
coefficient as

N
n


β

:=
[N]β !

[n]β ![N − n]β !
=


1 if n = 0 or n = N,
N
n

 N−n
k=1

bk+n(β)

bk(β)
if 1 ≤ n ≤ N − 1 (37)

where, as expected, limβ→1


N
n


β

=
N
n


.
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We can introduce therefore the Leibniz-like β-triangle as

r (1)
N,n,β :=

1
[N + 1]β

1
N
n


β

, n = 0, . . . ,N. (38)

The Leibniz triangle (6) is obtained in the β → 1 limit, limβ→1 r
(1)
N,n,β ≡ r (1)

N,n. As before, in order to get
a set of probabilities we have to normalize the triangles, obtaining

r̂ (1)
N,n,β :=

r (1)
N,n,β

N
k=0

N
k


r (1)
N,k,β

, (39)

whose associated probabilities

p̂(1)
N,n,β :=


N
n


r̂ (1)
N,n,β (40)

satisfy by construction the normalization condition
N

n=0 p̂
(1)
N,n,β = 1.

Wewill now generalize the Leibniz β-triangle by properly subtracting subtriangles of it. In analogy
with the previous deformation, let us now introduce a two-parameter family of triangles

r (ν)
N,n,β :=

r (1)
N+2(ν−1),n+ν−1,β

r (1)
2(ν−1),ν−1,β

≡ µ
(ν)
N,n,βr

(ν)
N,n, (41)

where ν ∈ N and

µ
(ν)
N,n,β :=

b2ν−1(β)

bN+2ν−1(β)

ν−1
k=1

bk+ν−1(β)

bk(β)

N−n+ν−1
k=1

bk(β)

bk+n+ν−1(β)
. (42)

The β → 1 limit of the two-parameters family of triangles (41) yields the undeformed family
(7), limβ→1 r

(ν)
N,n,β ≡ r (ν)

N,n. After the needed normalization, we obtain the family r̂ (ν)
N,n,β and the

corresponding probabilities

r̂ (ν)
N,n,β :=

r(ν)
N,n,β

N
k=0

(Nk)r
(ν)
N,k,β

, (43a)

p̂(ν)
N,n,β :=

N
n


r̂ (ν)
N,n,β . (43b)

It can be proved that the triangle (43a) is asymptotically scale-invariant,

lim
N→∞

r̂ (ν)
N−1,n,β

r̂ (ν)
N,n,β + r̂ (ν)

N,n+1,β

= 1. (44)

The β-numbers appear as a variation of α-numbers and, moreover, they have the same asymptotic
behavior, limn→∞

[n]α
{n}α

= 1. Therefore, it could be expected that the behavior of p̂(ν)
N,n,α is the same as

p̂(ν)
N,n,α for N → ∞ with respect to the parameters of the deformation. However this is true only when

we consider values of the parameters greater than one. Indeed, for β-triangles, the following theorem
holds:

Theorem 3.2. The family of triangles (43) with ν ∈ N and β > 0 satisfies the property

N
2
√

ν − χ(β)
p̂(ν)
N,n,β

N≫1
∼ Pqβ (ν)(x), (45)
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Fig. 3. Probability distributions (43b) andw
(ν)
β (x) := logqβ (ν)

Pqβ (ν)(x)

Pqβ (ν)(0)
for ν = 2, N = 104 and different values of β; the derived

asymptotic behavior is also depicted as continuous line for each value of β: for the sake of clarity not all data are plotted. The
corresponding values of qβ (2) are given by Eq. (48).

where we have introduced the function

χ(β) := 1 + δβ,1 − max

1,

1
β


=


0 for β > 1,
1 for β = 1,

1 −
1
β

for 0 < β < 1,
(46)

and the properly centered and rescaled variable

x := 2


ν − χ(β)


n
N

−
1
2


. (47)

In Eq. (45), Pqβ (ν)(x) is a q-Gaussian with

qβ(ν) = 1 −
1

ν − χ(β)
=


1 −

1
ν

for β > 1,

1 −
1

ν − 1
for β = 1,

1 −
β

βν + 1 − β
for 0 < β < 1.

(48)

See Appendix B for the proof.
In Fig. 3 we present some numerical results for β-triangles for different values of β . We plot also

w
(ν)
β (x) := logqβ (ν)

Pqβ (ν)(x)

Pqβ (ν)(0)
(49)

for ν = 2 and different values of β .
Observe that qα(ν) = qβ(ν)when α > 1 and β > 1;moreover we canwrite the following relation

between the limiting value qβ(ν) for the deformed triangles (β ≠ 1) and the limiting value q1(ν) for
the undeformed triangle:

1
1 − qβ(ν)

=
1

1 − q1(ν)
+ 1 − χ(β). (50)

In particular

lim
β→1±

1
1 − qβ(ν)

=
1

1 − q1(ν)
+ 1. (51)



G. Sicuro et al. / Annals of Physics 363 (2015) 316–336 327

Eq. (50) can be written, for β ≠ 1, as

min{β, 1}
1 − qβ(ν)

=
min{β, 1}
1 − q1(ν)

+ 1. (52)

Finally, following the same arguments adopted for theα-triangles, it can be easily verified that also
in this case we have qent = 1.

4. A non asymptotically scale-invariant deformation

Inspired by theQ-calculus [29], we shall consider an alternative deformation of the Leibniz triangle
based on the so called Q-numbers, defined as:

[[n ]]γ :=
1 − γ n

1 − γ
, γ ∈ (0, ∞)\{1}, (53)

where we have used the notations γ and [[n ]]γ instead of the usual ones in order to avoid confusion
with the entropic index q in nonextensive statistical mechanics and the previously introduced α-
numbers andβ-numbers. For this reason, in the remainder of the paperwewill refer to theQ -numbers
as the γ -numbers.

Note that γ -numbers (53), α-numbers (10) and β-numbers (33) are related as follows:

[n]γ = {n − 1}γ + 1 = n

1 −

1
[[n ]]γ


+ 1. (54)

In the limit γ → 1 the γ -numbers reduce to the ordinary numbers, limγ→1[[n]]γ = n. Moreover, a
γ -factorial can be defined as

[[0 ]]γ ! := 1, [[n ]]γ ! :=

n
k=1

[[k ]]γ , lim
γ→1

[[n ]]γ ! = n!, n ≥ 1, (55)

as well as the standard Gauss binomial coefficients


N
n


γ

:=
[[N ]]γ !

[[n ]]γ ![[N − n ]]γ !
=


1 if n = 0 or n = N ,
N−n
k=1

1 − γ k+n

1 − γ k
if 0 < n < N,

(56)

with limγ→1


N
n


γ

=
N
n


. The Gauss binomial coefficients can be arranged in a Pascal γ -triangle:

which reduces to the Pascal triangle for γ → 1. We define the Leibniz-like γ -triangle as:

r (1)
N,n,γ :=

1
[[N + 1 ]]γ

1
N
n


γ

, (57)
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with corresponding normalized triangle

r̂ (1)
N,n,γ :=

r (1)
N,n,γ

N
k=0

N
k


r (1)
N,k,γ

, (58)

and associated probabilities

p̂(1)
N,n,γ :=


N
n


r̂ (1)
N,n,γ . (59)

In the limit γ → 1, triangles (57) and (58) reduce to the Leibniz triangle.
Proceeding as in the previous section, we can introduce the family

r (ν)
N,n,γ :=

r (1)
N+2(ν−1),n+ν−1,γ

r (1)
2(ν−1),ν−1,γ

, (60)

deformation of the family (7), and the corresponding normalized version and its associated probability

r̂ (ν)
N,n,γ :=

r (ν)
N,n,γ

N
k=0

N
k


r (ν)
N,k,γ

, (61a)

p̂(ν)
N,n,γ :=


N
n


r̂ (ν)
N,n,γ . (61b)

Remarkably, the γ -triangles (61a) are neither strictly nor asymptotically scale-invariant since

lim
N→∞

n
N ≡η fixed

r̂ (ν)
N−1,n,γ

r̂ (ν)
N,n,γ + r̂ (ν)

N,n+1,γ

=


1
2

for γ < 1,

0 for γ > 1.
(62)

In addition, probabilities (59) do not approach q-Gaussians with q ≠ 1, as limiting distributions
for large values of N .

Indeed, let us start from γ ∈ (0, 1): for N ≫ 1, ν > 1 and n
N ≡ η fixed. Then

r (ν)
N,n,γ =

1

r (1)
2(ν−1),ν−1,γ

1 − γ

1 − γ N+2ν−1

N(1−η)+ν−1
k=1

1 − γ k

1 − γ k+Nη+ν−1

∼

(1 − γ )
∞
k=1


1 − γ k


r (1)
2(ν−1),ν−1,γ

∼ O(1). (63)

The relevant contribution in the probability distribution shape is therefore simply given by the
binomial coefficient, and therefore, for N ≫ 1, we recover the Gaussian distribution (see Fig. 4(a))
for all values of γ ∈ (0, 1):

p̂(ν)
N,n,γ

N≫1
∼


2

πN
e−2N


η−

1
2

2
. (64)

For γ > 1 we can evaluate the asymptotic distribution as well. We can write

1

p̂(ν)
N,n,γ

=
1N
n

 N
k=0

hk(n,N; γ ), (65)
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(a) Probability distribution p̂(ν)
N,n,γ for ν = 2 and

different values of γ and theoretical prediction for
N = 104: not all data are represented for sake of clarity.

(b) Probability distribution p̂(2)
N,n, 3

2
for different values

of N .

Fig. 4. Numerical results for γ -triangles.

where

hk(n,N; γ ) :=




N
k

 k−n
j=1

1 − γ n+ν−1+j

1 − γ N−k+ν−1+j
for k > n,

N
n


for k = n,

N
k

 n−k
j=1

1 − γ N−n+ν−1+j

1 − γ k+ν−1+j
for k < n.

(66)

For N ≫ 1, n
N ≡ η, and denoting by k

N ≡ κ , we have that

hNκ(Nη,N; γ ) ∼


N
Nκ


γ N2(η−κ)(1−η−κ). (67)

It is easily seen that the quantity


Nκ
hNκ

(Nn)
can be finite only for η = 0 or η = 1, otherwise at least

one of its addends diverges and p̂(ν)
N,n,γ

N→∞
−−−→ 0, n = 1, . . . ,N − 1. Finally we get (see Fig. 4(b) for a

numerical comparison)

p̂(ν)
N,n,γ

N≫1
∼

δn,0 + δn,N

2
. (68)

5. Final remarks

We introduced three deformations – the α-, the β- and the γ -triangles – of the family of triangles
proposed in [23], in order to analyze the robustness of the q-Gaussian family as attractors. Each
one of the three proposed deformations depends on a single parameter in such a way that the
undeformed family is recovered when the value of that parameter equals 1. We observed that, in
all considered cases, the limiting distribution changes abruptly with respect to the undeformed
case when a deformed triangle is considered. Moreover, asymptotically equivalent deformations of
natural numbers (the α-deformation and the β-deformation) exhibit different limiting behaviors,
thus illustrating the high sensitivity of the limiting distribution with respect to the exact form of
the deformation. However, for the considered asymptotically scale-invariant deformations, the limiting
distribution of the deformed triangles is still a q-Gaussian, with a different value of q generically
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(a) Function qα(2) and its discontinuity for α = 1, see
Eq. (29).

(b) Function qβ (2) and its discontinuity for β = 1, see
Eq. (48).

Fig. 5. Functions qα(ν) and qβ (ν) evaluated for ν = 2 and different values of α and β respectively.

depending on the parameter of the deformation. Moreover, a discontinuity appears in q as function of
the parameters α, β of the deformations, in correspondence of the undeformed case α = β = 1 (see
Fig. 5). In particular

lim
α→1

1
1 − qα(ν)

= lim
β→1

1
1 − qβ(ν)

=
1

1 − q1(ν)
+ 1. (69)

Remarkably, this discontinuity appears when we switch from a scale-invariant triangle to an
asymptotically scale-invariant triangle. Forβ-triangles, and similarly forα-triangles, this discontinuity
expresses the fact that

lim
β→1

lim
N→∞

Np̂(ν)
N,n,β ≠ lim

N→∞

lim
β→1

Np̂(ν)
N,n,β . (70)

To exemplify this, let us introduce the following function:

∆
(ν)
N (β) :=

N
N

n=0

p̂(ν)
N,n,β − p(ν)

N,n

2. (71)

The quantity ∆
(ν)
N (β) is defined in such a way that, for N → ∞, it remains finite. Indeed, Np(ν)

N,n,β =

O(1) in the N → ∞ limit, and therefore
N

n=0 |p̂(ν)
N,n,β − p(ν)

N,n|
2

= O
 1
N


. In Fig. 6 it can be seen that

the convergence of ∆(ν)
N (β) to ∆

(ν)
∞ (β) := limN→∞ ∆

(ν)
N (β) is not uniform and that a discontinuity for

β = 1 appears in the N → ∞ limit.
The α-triangle is strictly stable under the action of the α-deformation for α ≠ 1, whereas a

dependence of the limiting value of q on β (for β < 1) appears when the β-deformation is considered,
although the limiting distribution is still a q-Gaussian (Marsh et al. [36] analyzed a probabilisticmodel
in which qent has a similar behavior with respect to a certain parameter of themodel). The structure of
relations (31) and (52) is quite common in the literature: it has been observed, indeed, that for many
systems characterized by a set of values of q, {qm}m∈M , M := {0, 1, . . .} ⊆ Z, a permutation of the
indicesm can be found such that [37]

ᾱ

1 − qm
=

ᾱ

1 − q0
+ m, ∀m ∈ M, ᾱ ∈ (0, 2]. (72)

Finally, using the γ -deformation, that is not an asymptotically scale-invariant deformation, for
γ > 1we obtain a limiting distribution that is not a q-Gaussian distribution, and for γ < 1we always
obtain a Gaussian. This fact suggests that the (asymptotic) scale-invariance property plays a central
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Fig. 6. Values of ∆
(ν)
N (β) for ν = 2 and different values of N: the limiting function limN→∞ ∆

(2)
N (β) is also represented,

including its discontinuity for β = 1.

role in the robustness of the set of q-Gaussian distributions as limiting distributions. More specifically,
the set of q-Gaussians appears to be robust under asymptotically scale-invariant deformations. It may
be interesting to investigate further the role of asymptotically scale-invariant deformations in the
stability of the q-Gaussian limiting distributions, to properly identify the conditions under which
the basin of q-Gaussians is an attractor for these probabilistic models. This line of research could
ultimately provide a deeper understanding of why there are so many q-Gaussians and q-exponentials
in Nature.
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Appendix A. Asymptotic behavior of α-triangles

In this Appendix we prove Theorem 3.1 on the asymptotic distribution of α-triangles. We restate
the theorem here for the reader’s convenience.

Theorem. The family of triangles (20) with ν ∈ (1, +∞) and α ∈ R+
\{0} satisfies the property

N

2


ν − δα,1
p̂(ν)
N,n,α

N≫1
∼ Pqα(ν)(x), (A.1)

where we have introduced the properly centered and rescaled variable

x := 2


ν − δα,1


n
N

−
1
2


. (A.2)

In Eq. (A.1), Pqα(ν)(x) is a q-Gaussian with

qα(ν) := 1 −
1

ν − δα,1
=


1 −

1
ν

for α ≠ 1,

1 −
1

ν − 1
for α = 1.

(A.3)
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Proof. The strategy of the first part of the proof consists in a generalization of the argument in [23].
We want to evaluate the asymptotic behavior, for N ≫ 1, of

N
n


r (ν)
N,n,α (A.4)

with η :=
n
N fixed. Let us firstly observe that

r (ν)
N,0 =

Γ (2ν)Γ (N + ν)

Γ (ν)Γ (N + 2ν)
=

Γ (2ν)

Γ 2(ν)

∞
k=0

(1 − ν)k

k!(N + ν + k)
, (A.5)

where we used the formula for the beta function4

B(a, b) :=
Γ (a)Γ (b)
Γ (a + b)

=

 1

0
ta−1(1 − t)b−1dt =

∞
k=0

(1 − b)k
k!(a + k)

, (A.6)

and (a)k := a(a + 1) . . . (a + k − 1) is the rising factorial. The previous formula allows us to write
down a general expression for the element r (ν)

N,n as follows:

r (ν)
N,n =

n
i=0

(−1)n−i

n
i


r (ν)
N−i,0

=
Γ (2ν)

Γ 2(ν)

n
i=0

∞
k=0

(−1)n−i(1 − ν)k

k!


n
i


1

N + ν − i + k
. (A.7)

To evaluate the large N behavior, we use the saddle point approximation,
n

i=0

(−1)n−i

n
i


1

N + ν − i + k
=


∞

0


eξ

− 1
n

e−(N+ν+k)ξdξ

∼


2π
N

(1 − η)ν+k+N(1−η)− 1
2 ηNη+

1
2 , (A.8)

where η :=
n
N . Inserting the previous term in the complete expression we have

r (ν)
N,n ∼

Γ (2ν)

Γ 2(ν)


2π
N

(1 − η)ν+N(1−η)− 1
2 ην+Nη−

1
2 . (A.9)

Moreover, using the Stirling formula,

N

N
n


N≫1
∼


N
2π

(1 − η)−N(1−η)− 1
2 η−Nη−

1
2

⇒ N

N
n


r (ν)
N,n

N≫1
∼

Γ (2ν)

Γ 2(ν)
[(1 − η) η]ν−1 . (A.10)

To complete the proof, we only need to evaluate the asymptotic behavior of µ(ν)
N,n,α for large N at fixed

η. Obviously, limα→1 µ
(ν)
N,n,α = 1. Forα ≠ 1wehave that, by direct computation on the expression (22)

µ
(ν)
N,n,α

N≫1
∼ Nη(1 − η) (A.11)

4 This formula can be obtained using the Newton’s generalized binomial theorem on the expression B(a, b) :=
 1
0 ta−1(1 −

t)b−1dt .
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up to a multiplicative constant depending on α and ν. The thesis follows straightforwardly after a
proper change of variable, η →

x
2
√

ν−δα,1
+

1
2 , and normalization. Observe also that the thesis holds

for all real values ν > 1. �

Appendix B. Asymptotic behavior of β-triangles

In this Appendix we prove Theorem 3.2 on the asymptotic distribution of β-triangles. We restate
the theorem here for the reader’s convenience.

Theorem. The family of triangles (43b) with ν ∈ N and β > 0 satisfies the property

N
2
√

ν − χ(β)
p̂(ν)
N,n,β

N≫1
∼ Pqβ (ν)(x), (B.1)

where we have introduced the function

χ(β) := 1 + δβ,1 − max

1,

1
β


=


0 for β > 1,
1 for β = 1,

1 −
1
β

for 0 < β < 1,
(B.2)

and the properly centered and rescaled variable

x := 2


ν − χ(β)


n
N

−
1
2


. (B.3)

In Eq. (B.1), Pqβ (ν)(x) is a q-Gaussian with

qβ(ν) = 1 −
1

ν − χ(β)
=



1 −
1
ν

for β > 1,

1 −
1

ν − 1
for β = 1,

1 −
β

βν + 1 − β
for 0 < β < 1.

(B.4)

Proof. The proof of the theorem strictly follows the proof of Theorem 3.1 in Appendix A, the only
difference being the evaluation of the asymptotic behavior of theµ

(ν)
N,n,β coefficient for largeN at fixed

n
N .

For β = 1, we have simply µ
(ν)
N,n,1 = 1 so there is nothing to do.

For β ≠ 1 and ν = 2, 3, . . . , denoting N − n = Nη, we can write

µ
(ν)
N,n,β =

ν−1
k=0

bk+ν(β)

Nη−1
k=0

bk+ν(β)

Nη−1+ν
k=0

bk+ν+N(1−η)(β)

. (B.5)

Observe that the first product

B0 :=

ν−1
k=0

bk+ν(β) (B.6)
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is only a global factor not depending on N, n. We need to perform our asymptotic analysis only on the
fraction

Nη−1
k=0

bk+ν(β)

Nη−1+ν
k=0

bk+ν+N(1−η)(β)

. (B.7)

We distinguish the two cases, 0 < β < 1 and β > 1.
For 0 < β < 1

µ
(ν)
N,n,β

N≫1
∼ B−N

1
β [η(1 − η)]

1
β , (B.8)

where B− is a certain constant. Indeed we have that the asymptotic behavior of the denominator of
the fraction (B.7) can be evaluated as

1
Nη−1+ν

k=0
bk+ν+N(1−η)(β)

∼
1

βNη+ν

Nη−1+ν
k=0


1 −

1
β

1
k + ν + N(1 − η)



=

Γ


N + 2ν −

1
β


βNη+νΓ (N + 2ν)

Γ (N(1 − η) + ν)

Γ


N(1 − η) + ν −

1
β

 ∼
(1 − η)

1
β

βNη+ν
. (B.9)

Moreover, we have also

Nη−1
k=0

bk+ν(β) = βNη

Nη−1
k=0

bk+ν(β)

β
= βNη

∞
k=1

bk+ν(β)

βb′

k+ν(β)
. (B.10)

In the previous expression we introduced

b′

k+ν(β) :=

1 for 1 ≤ k ≤ Nη − 1,
bk+ν(β)

β
for k ≥ Nη. (B.11)

In the large N limit we have that

Nη−1
k=0

bk+ν(β) = βNη
∞
k=1

bk+ν(β)

βb′

k+ν(β)

N≫1
∼βNη

∞
k=1

bk+ν(β)

βb′′

k+ν(β)
= βNηB1(β)

Nη−1
k=1


1 +

1
β(k + ν)



= B1(β)βNη Γ (ν)

Γ


ν +

1
β

 Γ


Nη + ν +

1
β


Γ (Nη + ν)

∼ B1(β)B2(β)βNηN
1
β η

1
β , (B.12)

where we have introduced

b′′

k+ν(β) :=

1 for 1 ≤ k ≤ Nη − 1,

1 +
1

β(k + ν)
for k ≥ Nη, (B.13)
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and the constants5

B1(β) :=

∞
k=0

1 +
1

k+ν
−

1−β

1−βk+ν

min{β, 1} +
1

k+ν

, (B.14a)

B2(β) :=
Γ (ν)

Γ


ν +

1
β


e

1
β

. (B.14b)

Eq. (B.8) follows directly identifying B− ≡ B1(β)B2(β).
For β > 1 we have instead that

µ
(ν)
N,n,β

N≫1
∼ B+Nη(1 − η), (B.15)

where B+ is a certain constant depending on β . Indeed, in Eq. (B.5) we can write

Nη−1
k=0

bk+ν(β)

Nη−1+ν
k=0

bk+ν+N(1−η)(β)

∼

Nη−1
k=0

bk+ν(β)

Nη−1+ν
k=0


1 −

1
k + ν + N(1 − η)



=
N(1 − η) + ν − 1

N + 2ν − 1

Nη−1
k=0

bk+ν(β) ∼ (1 − η)

Nη−1
k=0

bk+ν(β). (B.16)

The remaining product can be written similarly as

Nη−1
k=0

bk+ν(β) ∼ B1(β)

Nη−1
k=0


1 +

1
k + ν


∼ B1(β)B2(1)Nη, (B.17)

where we used the definitions (B.14). Eq. (B.15) follows directly imposing B+ ≡ B1(β)B2(1).
Summarizing, for β > 0, β ≠ 1, up to a global multiplicative constant,

µ
(ν)
N,n,β

N≫1
∼ [Nη(1 − η)]max


1, 1

β


−δβ,1 . (B.18)

Defining the function χ(β) as in (B.2), we have

Nχ(β)


N
n


r (ν)
N,n,β

N≫1
∼ [η(1 − η)]ν−χ(β) . (B.19)

Introducing now the variable

x := 2


ν − χ(β)


η −

1
2


(B.20)

and properly normalizing we obtain the thesis. �
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