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Transport signatures of few-atom carbon rings

Carlos Rojas,a A. León,b M. Pacheco, a Leonor Chico ac and P. A. Orellana *a

We study the electronic transport through an all-carbon quantum ring side-coupled to a quantum wire.

We employ both first-principles calculations and a tight-binding approach; the latter allows for the

derivation of analytical expressions for the conductance and density of states, which facilitates the

interpretation of the transport characteristics. Two bond models are employed: either all the hoppings

are equal (cumulenic ring) or they have alternating bonds (polyynic ring). Assuming cumulenic bonds,

if the number of atoms in the carbon ring is a multiple of four, it produces an antiresonant peak in

the conductance at the Fermi level. This effect disappears for the polyynic configuration, i.e., when

the hoppings in the carbon rings are alternating. Additionally, a gap opens at the Fermi energy in the

polyynic rings, yielding distinct transport signatures for the two bond configurations. Comparison to

first-principles calculations shows an excellent agreement on the changes of the conductance due to

the carbon ring. We propose such transport measurements as a way to elucidate the character of the

bonds in these novel carbon nanostructures.

1 Introduction

During the past decades, there has been an increasing interest
in the study of molecular electronic devices, dominated by
quantum mechanical laws at the single-molecule scale. Within
this regime, the discovery of new synthetic carbon allotropes
like fullerenes, carbon nanotubes, and graphene opened new
avenues for the advancement of electronics.1–3 Lately, rings of
two-coordinate carbon atoms called cyclo[n]carbons (Cn) have
been suggested as an alternative family of molecular carbon
allotropes playing an essential role in the formation of full-
erenes. Some of them have not been structurally characterized
or studied in condensed phases, but recently, the synthesis of
the all-carbon molecule C18 from an organic precursor was
reported4. Regarding cyclocarbons, a controversial and funda-
mental question concerns whether they are polyynic, that is,
with alternating single and triple bonds of different lengths, or
cumulenic, with consecutive double bonds.5–9 Because of this,
the electronic and molecular structure of cyclo[n]carbons have
been topics of theoretical debate. For example, regarding the
synthesis of C18, previous studies of its structure with density
functional theory (DFT) and Møller–Plesset perturbation theory
predict that the lowest-energy geometry of C18 is cumulenic

(perfect D18h symmetry),5,6 whereas Hartree–Fock10–12 and
high-level Monte Carlo and coupled clusters methods suggest
that the cyclic polyacetylene configuration with alternating
bond lengths (D9h symmetry) is the ground state.7,8 Although
this dispute has been experimentally settled for n = 18, which
has been shown to be of polyynic nature,4 other configurations
might be possible for n a 18. One means to elucidate the
energy spectra of these molecules is by studying their signa-
tures in the electronic transport of a coupled quantum wire.
Motivated by the already mentioned characteristics of cyclocar-
bons, we address a theoretical study of the electronic and
transport properties of a carbon ring side-attached to a
conducting wire.

Previous works13–15 indicate that a theory based on the
single-electron picture can explain many interesting results in
the electronic transport, such as the appearance of antireso-
nances. Such simplification of the model is also done in order
to carry out an analytical treatment. Working in this formalism
we show that the system develops an oscillating conductance
behavior, with resonances and antiresonances. Besides, a
remarkable dependence on the size of the carbon ring was
found. In particular, if the number of carbon atoms in the ring
is a multiple of four, an antiresonance appears at the Fermi
level in the cumulenic configuration. We also compare to first-
principles calculations in order to verify the adequateness of
our analytical results, finding an excellent agreement between
the two approaches.

The article is organized as follows: in Section 2, the geometry
of the system is detailed. The formulation for the linear con-
ductance and density of states (DOS) is established in terms of
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the single-particle Green’s functions in order to derive an
analytical solution which eases the analysis and interpretation
of the results. In Section 3, the relevant physical quantities
conductance and DOS are presented, paying special attention
to the positions of the antiresonances in the linear conductance
spectrum. A comparison to DFT calculations is performed,
showing an excellent agreement with the tight-binding model.
Finally, the main results are summarized in Section 4.

2 Geometry and models

The system under consideration consists of a carbon ring and a
quantum wire, the latter is represented by a homogeneous
linear chain of carbon atoms; we define N and M as the number
of atomic sites in the wire and the ring respectively. The ring is
connected at an arbitrary location in the wire denoted as j. The
wire also acts as a bridge coupled in series with leads approxi-
mated by a continuum of free states, mimicking the presence of
large electron reservoirs. The full system is illustrated in Fig. 1.

Within the tight-binding (TB) approximation, the total
Hamiltonian of the system is

H = Hw + Hr + Hwr + Hi. (1)

The first term is the Hamiltonian for the wire and is given by

Hw ¼
XN
i¼1

eic
y
i ci � t

XN�1
i¼1

c
y
iþ1ci þ c

y
i ciþ1

� �
; (2)

where c†
i (ci) is the electron creation (annihilation) operator of an

electron at site i of the wire. The wire onsite energy is assumed
to be equal to zero and the hopping energy is set to t. The
second term is the Hamiltonian for the isolated ring and reads

Hr ¼
XM
p¼1

epdypdp �
XM�1
p¼1

vp d
y
pþ1dp þ h:c:

� �
(3)

where vp = v1, v2 if p is odd or even respectively. Here d†
p(dp) is

the electron creation (annihilation) operator of an electron,
assuming again that the energy for the atomic sites in the ring
is zero; and v1,2 are the hopping terms between the atoms in the
ring. In order to model the cumulenic geometry of the ring we
set v1 = v2, whereas for the polyynic form v1 and v2 have

different values. The third term in the Hamiltonian is the
coupling between the wire and the ring, given by

Hwr = �V(c†
j d1 + d†

1cj), (4)

where V stands for the coupling parameter between site j in the
wire and site 1 of the ring. Finally, the last term in the
Hamiltonian represents the interaction with the leads

Hi ¼ �
X
kL

VL
kL

f
y
kL
c1 þ c

y
1fkL

� �

�
X
kR

VR
kR

f
y
kR
cN þ c

y
NfkR

� �
;

(5)

where f
y
ka

fkað Þ is the creation (annihilation) operator of an
electron in the continuous state ka and the coupling between
each lead is given by the terms Va where a = L, R. For the sake of
simplicity we set all the onsite energies equal to zero for both
the ring and the wire.

We study the electronic transport within the Landauer
approach, where the two-terminal conductance G at zero tem-
perature is proportional to the total transmission for electrons
at the Fermi energy EF,

G ¼ 2e2

h
T EFð Þ: (6)

The total transmission is obtained from the knowledge of
the molecular energy levels of each isolated system, making use
of the Fisher–Lee relation

T = 4Tr{GLG̃GRG̃†}, (7)

where G̃ is the Green’s function matrix for the full problem and

Ga ¼ i

2
Sa � Say
� �

is the spectral matrix density of the a = L, R

lead, which has nonzero elements GL
11 and GR

NN for the system
under consideration, since only the first and last atom of the
wire are coupled to the leads. Thus, the formula for the
conductance simplifies to

G ¼ 8e2

h
GL
11G

R
NN

~G1N

�� ��2: (8)

The matrix element G̃1N in the latter expression is obtained
from the Dyson equation:

~G1N ¼
G1N

1� G11SLð Þ 1� GNNSRð Þ � G1N
2SLSR

; (9)

where the Green’s functions G1N, GNN and G11 are also obtained
from the Dyson recursive formula. For simplicity, the self-
energies are chosen SL = SR = �iG, since our concern is to
model the effects produced by the ring on the conductance.

Additionally, the density of states of the carbon ring serves
as an aid to elucidate the transport properties of the full system:

r ¼ �1
p
Im

XM
m¼1

~Gmm

" #
: (10)

DFT calculations were also performed, where the electronic
properties of the systems were obtained using the OPENMXFig. 1 Schematic representation of the system, where N = 3 and M = 12.
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code,16 based on localized pseudoatomic orbitals (PAOs)17 and
norm-conserving pseudopotentials.18 The PAOs of carbon atoms
consist of two s orbitals and two p orbitals. The Perdew–Burke–
Ernzerhof (PBE) exchange-correlation functional19 derived within
the GGA is used, with an energy cutoff equal to 150 Ry and a
convergence criterion of 10�8 Hartree. For calculations of the
electronic band structure, 50 k points were chosen along each
high-symmetry line (G–X line) in the first Brillouin zone. A 50� 50
� 1 Monkhorst–Pack k-space mesh is used to discretize the first
Brillouin zone. The Gaussian and tetrahedron methods are
employed for the DOS calculations.20 The Fermi energy calculated
through the DFT method enters in the tight-binding calculations
as a free parameter.

3 Results and discussion
3.1 Cumulenic geometry

Once we obtain the Green’s functions, we can calculate the
conductance as a function of the energy levels of the wire and
the carbon ring. To begin with, we focus on the study of the
isolated wire and ring in order to determine their influence on
the system. Fig. 2 shows the conductance and density of states
of the system without the ring, i.e., the wire connecting the two
electrodes.

The number of resonant peaks exactly matches the number
of atomic sites in the wire and their positions reveal its energy
spectrum.21 It should be noted that for N odd the wire gen-
erates a resonant peak at E = 0. Therefore, we consider that the
3-site chain is an optimal choice because it has a simple energy
spectrum and avoids additional couplings in the first-
principles calculations as well as the occurrence of a resonance
at the Fermi level.

The cumulenic structure is modeled by setting all the
hopping parameters of the ring equal to t, i.e., the hopping of
the wire. The transmission for different values of the total
atomic sites M is analyzed, specifically focusing on rings with
an even number of atoms. This choice is motivated by the high
interest in the recently synthesized C18 molecule22–27 and also
because Cn molecules are particularly stable when n = 4k + 2

(with k being an integer),26,28 as correctly predicted by Pitzer
and Clementi in 1959.29 Fig. 3 displays the transmission for
several rings, setting the connection with the ring at the central
atom of the wire.

The system exhibits an oscillating pattern of resonances and
antiresonances. The antiresonances that appear at the Fermi
level for rings with size M = 4m (with m integer) are clearly
related to the spectra of the carbon rings, so it is important to
compare these features to the energy levels of isolated rings.
Their energy spectra are presented in Fig. 4, obtained from the
tight-binding model. Indeed, we verify that there is an anti-
resonance in the conductance of the system for each energy
level of the carbon ring. For example, for the M = 4 carbon ring
the antiresonance is pinned at the Fermi level, while for E = �2t
and E = 2t the conductance is exactly zero, but resonant peaks
also appear very close to these energies. It is also noticeable for
this configuration the energy shift of the conductance reso-
nances due to the chain, which are at the Fermi level and
around E = �1.5t. They are recognizable for M = 4. However, for
M = 8 they are displaced in energy because of the proximity of

Fig. 2 Conductance (blue) and density of states (orange) of the wire vs.
energy for several atomic sizes.

Fig. 3 Conductance vs. energy for several rings in the cumulenic
configuration.

Fig. 4 Energy spectrum of the isolated rings from M = 4 to M = 20 for the
cumulenic configuration in the tight-binding model.
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the ring and chain states for these energies. Consequently, the
hybridization of the states shifts the resonances of the chain
towards E = �t.

Both the chain-related resonances and the ring antireso-
nances can be explained by the Fano effect,30 where the inter-
ference between two scattering amplitudes, one within a
continuum of states (the metallic leads) and the second due
to an excitation of a discrete state, i.e., those of the carbon ring
and chain. The energy dependence of the scattering amplitude
is given by the normalized Fano lineshapes

Fðq; eÞ ¼ 1

1þ q2
ðqþ eÞ2
1þ e2

;

where e = 2(E � ER)/G is the dimensionless reduced energy,
which measures the energy relative to the position of the
resonance ER in units of resonance width G, and q is a
dimensionless Fano parameter that determines the form of
the Fano lineshapes. For small values of this parameter, (q - 0)
the Fano-Beutler function describes an almost symmetrical
drop to zero around the energy of the resonance. It occurs
when the discrete system is laterally coupled to the continuum,
thus explaining the antiresonance of the ring around its energy
levels. In contrast, if a discrete system is embedded in a
continuum of states, such as that of the wire, the shape
parameter tends to infinity (q - N), and the transmission
shows an asymmetrical resonance centered on the discrete
energy. Fig. 5 shows a comparison between the conductance
profiles for M = 14 and Fano lineshapes.

The characteristic antiresonance profile at the Fermi level
occurs for all carbon rings with a number of atomic sites M
multiple of 4. This is due to the structure of energy levels of the
rings, which is obtained analytically and is given by

en ¼ �2t cos
2pn
M

� �
; n ¼ 1; 2; . . . ;M: (11)

Thus, it is easy to see that there is always an energy level at �2t.
Moreover, if M is even, there is a state at en = 2t (n = M/2).
Besides, it is straightforward to show that for carbon rings with
M = 4m, where m A N, en = �2t cos(np/2m), n = 1, 2,. . .,4m. Then,
if n/m is an odd integer, en coincides with the Fermi energy.
This happens for n = m and n = 3m; therefore, all carbon rings
with M = 4m will have a doubly degenerate state at the Fermi
level, which is reflected as an antiresonance in the conductance
for E = 0. In general, if M = pm,

en ¼ �2t cos
2p
p

n

m

� �
; n ¼ 1; 2; . . . ; pm;

there is always a degenerate energy ep = �2t cos(2p/p) for n = m
and n = (p � 1)m. This antiresonances have been also observed
in coupled quantum dot rings.31 A related system is a side-
coupled chain, which presents an even–odd effect in the posi-
tion of the antiresonances, due to the different energy spectrum
of the linear chain.32 In fact, the position of antiresonances in
the conductance is given by the eigenvalues of the side-coupled
ring or chain.31,32

A gate voltage can be used to move the energy levels of the
ring to the Fermi energy. This can be modeled by a variation of
the onsite energies of the carbon ring atoms, which produces
an antiresonance in the conductance of the system, as repre-
sented in Fig. 6, which shows the conductance set at E = 0 as a
function of the onsite energy of the atoms in the ring. In this
way, the energy spectrum of any ring can be known by analyzing
the transport properties of a conductor coupled to the ring. The
antiresonances appearing in the conductance of the system are
characteristic of the bond configuration and number of atoms
of the structure.

We also present a comparison between the results already
shown, obtained with the TB model, and DFT calculations. In
this way, we can assess the validity of using a simple model to
explain transport phenomena in quantum systems. Before
presenting the conductance of the whole system, we first
consider the subsystems: the conductor, i.e., the carbon chain
without the coupled ring, and the isolated ring. Note that the
main fitting parameter of the tight-binding model is the

Fig. 5 Conductance of the system with a ring of atomic size M = 14 (blue)
and a Fano lineshape (red) with q = 4 and G = 0.02t.

Fig. 6 Conductance vs. onsite energy of the rings for the cumulenic
configuration.
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hopping energy, which we find to be around t = 3 eV. Fig. 7
shows the conductance of the atomic chain, where the red line
represents the DFT calculations, that adjusts very well to the TB
model near the Fermi level and for positive values of energy.

Fig. 8 presents the energy spectrum of the isolated carbon
rings in an energy range close to the Fermi level. A remarkable
similarity between the results of the two models is patent.
Obviously, DFT calculations include more orbitals than our
TB model; in some cases, we have to shift in energy the DFT
results, setting the same Fermi energy in both models in order
to make the comparison. For M = 4m the similarities around the
Fermi energy were evident. However, for other carbon rings like
M = 10 and M = 14, an energy shift is necessary. The shift is
performed by including a nonzero site energy ep in the TB
approach. This sufficed to adjust the states of all the rings. We
note that the value of the energy shift ep depends on the
number of carbon atoms M.

In addition to this, DFT calculations allows us to obtain the
molecular orbitals of the HOMO and LUMO states for a M = 12
ring at the Fermi level, as shown in Fig. 9, which reveals the

nonbonding nature of the states at zero energy. The nodes and
the positive/negative signs of the wavefunction can be
explained by taking into account that the rings present spatial
inversion symmetry.

In particular, for Fig. 9 with M = 12 and for all rings with M =
4m where m A N, we have a degenerate state at the Fermi level.
As discussed previously from eqn (11), e = 0 for two values of the
wavenumber, namely, k = p/2 and k = 3p/2. Although the
corresponding eigenfunctions do not have a well-defined par-
ity, we can construct linear combinations of these eigenfunc-
tions which are also parity eigenfunctions. The symmetric and
antisymmetric combinations represented by cosine and sine
functions explains the sign of the wavefunction in Fig. 9, so that
cos(pj/2) is zero for j odd, and is equal to �1 for j even, thus the
presence of six nodes, three positive and three negative values
for the wavefunction is clearly justified. Also as we can see that

Fig. 7 Comparison between the TB (blue) and the DFT calculations (red)
for the conductance of the isolated atomic chain.

Fig. 8 Comparison between TB model (cross) and DFT calculations
(circle) on the energy spectrum of the isolated rings from M = 4 to M =
24 near the Fermi level. A cumulenic configuration is assumed.

Fig. 9 Molecular orbitals for the HOMO (upper panel) and LUMO (lower
panel) states of a ring with M = 12 in the cumulenic configuration at the
Fermi level. Colors represent the sign of the eigenfunction: red for positive
values and blue for negative values.
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where there is a node in the HOMO state, the wave function is
different from zero in the LUMO state, we can check that by
looking at the antisymmetric part of the wavefunction sin(pj/2),
which is zero for j even, and equal to �1 for j odd.

Finally, Fig. 10 displays the comparison between the con-
ductances obtained from the two models around the Fermi
level. In this case, this was made so that the blue curve
representing the TB model fits the DFT calculations. The most
important observation regarding the conductance of the system
is the clear antiresonance that appears at the Fermi level for
carbon rings with M = 4m in both models. It is also important to
note that for the other rings with M a 4m, the peaks that
appear due to the carbon ring are not symmetric, in contra-
distinction to the TB model. This is best seen by analyzing the
conductance for the 10-site ring system and comparing it to
Fig. 3.

3.2 Polyacetylene geometry

For the polyynic cyclic form of the carbon ring, we must
consider the difference in the length of the single and triple
bonds. These differences in alternating bond lengths repre-
sented by the hopping parameter v are considered in the
Hamiltonian Hr, eqn (3). As in the previous section, the
energies are given in units of t, setting v1 = t, while the other
hopping parameter is v2 = 0.75t. We depict the conductance for
rings with these characteristics and the density of states of the
isolated carbon rings in Fig. 11.

In the cumulenic configuration, we can observe that the
carbon ring generates antiresonances at the positions of its
energy levels. The most notable change for the conductances of
Section 3.1 is that the antiresonance that occurs at the Fermi
level for carbon rings with M = 4m disappears. This is due to the

Fig. 10 Comparison between TB (blue) and DFT calculations (red) for the
conductance of the whole system. A cumulenic configuration in the ring is
assumed.

Fig. 11 Conductance vs. energy (blue) and density of states (orange) of
the isolated carbon rings for the polyynic geometry.

Fig. 12 Energy spectra of the isolated rings from M = 4 to M = 20 for the
polyynic configuration in the tight-binding model.

Fig. 13 Conductance vs. onsite energy of the carbon rings in a polyynic
configuration.

Paper PCCP

Pu
bl

is
he

d 
on

 1
5 

Ju
ne

 2
02

2.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

D
A

D
 C

O
M

PL
U

T
E

N
SE

 M
A

D
R

ID
 o

n 
7/

8/
20

22
 4

:0
4:

54
 P

M
. 

View Article Online

https://doi.org/10.1039/d2cp01308h


This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 15973–15981 |  15979

change in the hoppings of the rings, which produces a different
energy spectrum given by

en ¼ �t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 þ 2r cos

4pn
M

� �s
; (12)

with r = v/t, the ratio between the hopping in the carbon ring.
For carbon ring with M = 4m, if n = m then the LUMO and
HOMO states are eLUMO = t(1 � r) and eHOMO = �t(1 � r),
respectively. This property of the spectrum can be seen in
Fig. 12. Since M = 2m, where m A N, now the possible values
for the number n are n = 1, 2,. . ., m, all of them give nonzero
values for the energy. Therefore, no antiresonance occurs in the
Fermi level; for example, for M = 4 the carbon ring has energy
levels in E = �0.25t and E = �0.75t. it is evident in Fig. 13 that
there are antiresonances at those points. We can also see that
the energy gap around the Fermi level is the same for all rings
with M= 4m; this is seen both in the conduction and in the
energy spectra of the isolated carbon rings.

Also, Fig. 13 shows the conductance set at the Fermi energy
E = 0 as a function of the onsite energy of the atoms in the
carbon ring. As we can observe, the spectrum of the carbon ring
is reflected in the antiresonances of the conductance. Thus, it
proves again that the conductance measurements can be an

Fig. 14 Comparison between TB model (cross) and DFT calculations
(circle) on the energy spectrum of the isolated rings from M = 4 to M =
24 near the Fermi level. A polyynic configuration is assumed.

Fig. 15 Molecular orbital for the HOMO (upper panel) and LUMO (lower
panel) states of a ring with M = 12 in the polyynic configuration.

Fig. 16 Comparison between the TB (blue) and DFT calculations (red) for
the conductance of the whole system. A polyynic configuration in the ring
is assumed.
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alternative to assess the carbon ring energy spectrum. DFT
calculations were also carried on for this case. Fig. 14 shows the
comparison of the energy spectrum of the rings between the
two models. As in the case of the cumulenic configuration, the
rings with M = 4m adjusted satisfactorily while the others
needed an energy shift to equalize the Fermi levels in both
models. Fig. 15 displays the orbital for the HOMO (upper panel)
and LUMO (lower panel) states of a isolated ring with M = 12 in
the polyynic configuration. As we can see, molecular bonds are
formed in this configuration.

This readjustment was also done to compare values of the
conductance close to the Fermi level, and the results are shown
in Fig. 16. As expected, there are no antiresonances at the Fermi
energy (E = 0). However, the asymmetry in the positions of the
peaks due to the carbon ring in the DFT calculations is more
noticeable even for carbon rings with M = 4m, such as M = 8 and M
= 12, which present an antiresonance very close to E = 0. Despite
this, the energy difference between peaks due the ring is very
similar in both models, as commented in the previous cases.

4 Conclusions

In this article, we investigate the spectrum and the conductance
of a carbon ring coupled to a carbon wire, with two bond ring
configurations, cumulenic and polyynic. We find that the
system presents a series of resonances and antiresonances
due to the coupling of the carbon ring levels to the wire
continuum. Resonances due to the chain and the antireso-
nances of the ring occur in the energy levels of the respective
subsystems, both for the cumulenic and polyynic configura-
tions. For the cumulenic case with M = 4m there is an anti-
resonance in the conductance at the Fermi energy. This does
not happen for the polyynic rings; in fact, they present a gap
around the Fermi energy. These changes in the electronic
spectra yield distinct transport behaviors. We have verified
our TB results against DFT calculations, showing an remark-
able agreement, both for the transport and DOS results, in the
region of validity of the TB one-orbital model. Therefore, we
conclude that transport measurements of a side-connected
carbon ring may be a way to elucidate the nature of the bond
configuration of the molecule.
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