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We study the slow-light performance in the presence of
exciton–exciton interaction in films of linear molecular ag-
gregates at the nanometer scale. In particular, we consider a
four-level model to describe the creation/annihilation of
two-exciton states that are relevant for high-intensity fields.
Numerical simulations show delays comparable to those
obtained for longer propagation distances in other media.
Two-exciton dynamics could lead to larger fractional delays,
even in presence of disorder, in comparison to the two-level
approximation. We conclude that slow-light performance is
a robust phenomenon in these systems under the increasing
complexity of the two-exciton dynamics. © 2016 Optical
Society of America
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Slow-light research has shown a great potential in many differ-
ent applications such as information technology, interferometry,
or laser physics as a tool to enhance light-matter interactions.
However, the overall effect on optical pulses is usually con-
strained by the necessity of long interacting media. There has
been recent exciting research that provides compact slow-light
devices and reduces the interacting length without limiting
the obtained delay. Group velocities of c∕100 have been achieved
in 100 μm semiconductor waveguides at GHz frequencies [1].
More recently, Kim et al. [2] proposed composites doped with
metal nanoparticles to obtain fractional delays (ratio between
delay and temporal width of the input pulse) of 2 for 5 μm pro-
pagation lengths, or even ∼40 for 90 μm using a noncollinear
pumping scheme. Slow light has also been employed to enhance
the gain in active semiconductor waveguides [3] which may
be used in ultra-compact amplifiers and optical modulators
of ∼100 μm [4] due to the increase in modulation efficiency.

Reducing the slow-light devices to the nanometer scale has
been proposed by using coherent population oscillations
(CPO) in J-aggregate nanofilms [5]. J-aggregates are molecular
assemblies that show coherently coupled transition dipole mo-
ments and an absorption band that is narrower and redshifted

with respect to the monomer band [6]. They have shown great
possibilities in photonic applications, thanks to their enhanced
nonlinear response and narrow absorption line. This leads, for
example, to a coherent coupling of excitons with cavity modes
or plasmons in metallic nanostructures [7]. In a previous work,
fractional delays up to ∼0.5 were shown with constrained dis-
tortion for input pulses of roughly a 10 GHz bandwidth in
ultrathin films of some tens of nanometers [5]. This work an-
alyzed CPO-based slow light in J-aggregates for optical pulses
resonant with the transition to the one-exciton band, while cre-
ation and annihilation of two excitons were not considered.
Gain of the probe pulse was also shown, in contrast to the
residual absorption observed in other slow-light media such
as optical fibers. Moreover, disorder effects typically present
in these systems, although reducing the attainable delay, have
a relatively low impact on slow-light performance.

One-to-two exciton transitions in J-aggregates were first ob-
served by Fidder et al. [8] in a pump-probe experiment on
pseudo-isocyanine-bromide (PIC-Br). Glaeske et al. [9] showed
that such a transition and exciton annihilation play a crucial
role in the conditions for achieving optical bistability. Multi-
exciton states have also been exploited to coherently control
the electromagnetic field inside a cavity [10] and are essential
in strong coupling with plasmonic structures [11].

In this Letter, we address how the two-exciton dynamics in-
fluence slow-light performance of linear J-aggregates nanofilms.
Films are considered to be formed by an ensemble of linear
molecules oriented parallel to each other and to the film sur-
face. Despite being formed by thousands of molecules, only
coherent segments with length N are relevant for optical ap-
plications due to the state localization in presence of disorder.
We model disordered molecular aggregates as an ensemble of
homogeneously broadened four-level systems of coherence
length N . See [9] for a detailed description of the model.
Particularly, we simulate three excitonic levels with j0i, j1i,
and j2i excitons. After the creation of the state j2i, exciton–
exciton annihilation takes place by resonant interaction with
a high molecular electronic-vibrational level �3�e−vib. Then, a
fast phonon-assisted relaxation is produced to the ground vibra-
tional state, to finally de-excite to j0i or j1i excitonic states.
Figure 1 represents the schematics of the model and the pulse
propagation through the nanofilm.
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Bloch equations under rotating wave and slowly varying
amplitude approximations for this system read

_ρN00 � idN
10�σN10E� − σN�

10 E�∕4ℏ� γN10ρ
N
11 � γN30ρ

N
33;

_ρN11 � idN
21�σN21E� − σN�

21 E�∕4ℏ − idN
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N
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Here, ω and E are the frequency and slowly varying amplitude
of the field, respectively. The population of the energy level j is
denoted by ρNjj , while σ

N
ij are the slowly varying amplitudes of

the off-diagonal density matrix elements. The latter accounts
for the coherences between the energy levels �i; j�. The transi-
tion frequency and the dipole moment within those levels of
every segment read ωN

ij and dN
ij � d 1

ij

ffiffiffiffiffi
N

p
, respectively. Here,

the superscript 1 refers to single-molecule properties. The
relaxation rate due to spontaneous emission is γNij � N γ1ij,
while ΓN

ij is the decay of the coherence σNij . Furthermore,
ΓN
10 � γN10∕2� Γ, ΓN

21 � γN10∕2� γN21∕2� Γ, and ΓN
20 �

γN21∕2� Γ, where Γ accounts for pure dephasing processes.
The vibronic state �3�e−vib relaxes to states j0i and j1i with rates
γN30 and γN31, respectively. Last, κ refers to the exciton–exciton
annihilation constant.

Size dispersion of the coherent segments translates into an
inhomogeneous broadening affecting the J-band at low temper-
atures, which mainly gives rise to the fluctuation of the
transition energies ℏωN

10 [12]. Thus, we will substitute all
size-dependent quantities, except ω10, by their mean values
in the aggregate, and we will remove the index N hereafter.
For brevity, we will refer to the field by way of the Rabi fre-
quency defined in units of Γ10 as Ω � dE∕ℏΓ10 from now on,
where d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d 2

10 � d 2
21�∕2

p
.

We will first study the response of the system to a sinusoi-
dally modulated signal Ω � Ω0 �Ωm sin�δt�. Assuming nor-
mal propagation and parallel polarization of the incident field
to the transition dipole moments of all the aggregates and to
the film plane, the equation for the field inside the film reads

Ω � Ωin � iγR
X
N

p�N ��μ10σ10 � μ21σ21�: (2)

Here, the last term is the electric polarization of the disordered
molecular aggregates, where μ10 � d 10∕d , μ21 � d 21∕d , and
p�N � refer to the disorder distribution over localization lengths.
The parameter γR � μ0jd j2N 0cωL∕2ℏΓ10 describes the col-
lective superradiant damping of an ensemble of four-level
molecules, N 0 being the density of localization segments.
The transmittance T and the dephasing ϕ induced by the film
are calculated by the ratio between the output and input
signals: Ωm

Ωin
m
� T expiϕ. Thus, the fractional delay is defined

as F � ϕ∕2π.
Let us start analyzing the case of no size dispersion. For sim-

plicity, hereafter we consider an incident field resonant with the
lower energy transition of the system, ω � ω10. We take
the parameters of PIC-Br as it is one of the most studied
J-aggregates. The magnitude of the nearest-neighbor coupling
has been established as J � 0.08 eV, which gives rise to the
transition energy shift ω21 − ω10 � 3π2J∕N 2ℏ � 0.25 THz.
We use γ10 � 1∕37 ps−1 (corresponding to a homogeneous
aggregate of size N � 100), Γ10 � γ10∕0.02, and
κ � 5 ps−1. These values are consistent with measurements
at low temperatures [13,14] and allow direct comparison with
previous CPO works [15]. The transition dipole moment be-
tween j0i and j1i is d 1

10 � 12.1 D, and the concentration of
aggregates is N 0 ∼ 1023 m−3. The dipole moment and the
spontaneous emission of the transition between j1i and j2i
are taken as d 21 �

ffiffiffiffiffiffiffi
1.5

p
d 10 and γ21 � 1.5γ10. Here, we have

considered the average ratio of the oscillator strength of the rel-
evant transitions as f 21∕f 10 ∼ d 2

21∕d 2
10 ∼ 1.5 [14]. Last,

though to the best of our knowledge, there is no experimental
measurement of the rates γ31 and γ30, the employed values in
this Letter are based on those found in the bibliography on
exciton–exciton annihilation in J-aggregates [16]. For simplic-
ity, we take equal decay values γ30 � γ31 � γvγ10. According to
our simulations, relevant figures of merit for slow-light perfor-
mance arise if �γ30 � γ31� ≳ γ10, so this will be the case in the
following numerical study.

Figure 2 depicts the fractional delay and transmittance,
calculated by the integration of Eq. (1) as a function of the
modulation frequency δ and different values of γv. In this figure
and, hereafter, we only show results for the saturation intensity
and γR ≲ γ�R , where CPO-based slow light attains maximum
delay [5]. If γR < γ�R, the fractional delay is reduced while,
for γR > γ�R, the system shows bistability, which introduces a
large distortion of the output signal. Notice that γ�R depends
on γv. Figure 2(a) shows that the particular values of γv have
no significant effect on the achieved maximum fractional delay
(F ∼ 0.2). However, an increasing value of γv shifts the
optimum frequency to higher values, up to ∼35 GHz for
γv � 3. Figure 2(b) shows an increasing transmission with a
larger γv as well. As was already shown for the one-exciton
approximation [5], there is gain in the weak sinusoidal modu-
lation due to energy transfer between the background field and
the sideband. This effect represents a remarkable advantage in

Fig. 1. Schematic view of the aggregate nanofilm modeled as an
ensemble of four-level systems. Input signal (dashed line) propagating
from left to right through the nanofilm results in a delayed output
signal (solid line). Pulses are shown according to numerical
simulations.
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contrast with the undesired residual absorption present in other
CPO-based slow-light devices.

We now focus on the system response under illumination

with a Gaussian-like pulse Ω � Ω0 �Ωm exp
�
−2

ffiffiffiffiffiffiffiffiffiffi
Log�2�

p
t

FWHM

�2
.

Here, FWHM refers to the full width at half-maximum of
the temporal pulse. In this case, not only the attainable delay,
but also the distortion of the output pulses is relevant for
applications. We define distortion D as the ratio between
the output and input pulse standard deviations. Figure 3 shows
the fractional delay and distortion as a function of the input
pulse temporal width. It can be seen that the pulse with maxi-
mum delay exhibits a large distortion. However, imposing a
limit of D � 2 (standard in slow-light experiments), values
up to F � 0.4–0.5 are obtained for 70 ps long pulses, which
gives rise to a ∼14 GHz bandwidth. As mentioned before,
increasing values of γv blueshift the maximum delay and reduce
the optimal pulse width. Lower distortions can be obtained by
reducing the incident intensity below the optimal one. This
also reduces the delay, although it remains in a relevant order
of magnitude for slow-light performance, as shown in Fig. 3
with symbols. The inset of Fig. 3 shows how the signal trans-
mittance is mostly larger than 1, in agreement with Fig. 2.
These results show that two-exciton dynamics lead to larger
fractional delays for similar values of distortion in comparison
to the two-level approximation.

To gain insight into the previous results, we turn to a more
tractable model by assuming the following approximations in
Eq. (1). We neglect atomic coherence effects by eliminating σ20
for _σ10 and _σ21. We also neglect the population ρ22 ≃ 0 since
the exciton–exciton annihilation time is much faster than the
rest of the decay times. Then, we adiabatically eliminate the
coherences σ10 and σ21, as usual in CPO studies, since dephas-
ing times are much shorter than the population decay times.
Last, we also consider that the frequency of the incident field
nearly matches the frequencies of the two relevant transitions.
In the following, we will show that the resulting system retains
the fundamental features of the full four-level model of Eq. (1).
This simplified model reads

_ρ11 � −γ10ρ11 � γ31ρ33 −
μ221Γ2

10Ω2

2Γ21 � κ
ρ11

−
μ210Γ10Ω2�2ρ11 � ρ33 − 1�

2
;

_ρ33 � −�γ30 � γ31�ρ33 �
μ221Γ2

10Ω2

2Γ21 � κ
ρ11;

Ωin

Ω
� 1 − γR

�
μ210�2ρ11 � ρ33 − 1� −

2μ221Γ10

2Γ21 � κ
ρ11

�
: (3)

Similar to what was studied in Fig. 2, we consider a sinusoidally
modulated incident field Ω � Ω0 �Ωm exp�−iδt� � c:c: that
induces a periodic modulation of the populations at the beat
frequency δ, i.e., ρjj � ρ0jj � ρmjj exp�−iδt� � c:c:. The coher-
ent population oscillation modifies the absorption of the side-
bands which leads to slow-/fast-light propagation. We insert
this expansion in Eq. (3) and equate terms oscillating at the
same harmonic of δ. The 0-order term gives us the behavior
of the strong field Ω0; see the inset of Fig. 2(b). The first-order
term in δ gives us the amplitude of the population oscillation
and the sidebands fields. Then, we compute the transmission
and delay time suffered by the sideband. Figures 2(a) and 2(b)
show a good agreement between the full integration of Eq. (1)
and the analytical results given by this simplified model. The
imaginary part of the susceptibility χ at the modulation fre-
quency δ can also be easily obtained from Eq. (3). The inset
of Fig. 2(a) depicts the characteristic hole in absorption present
in CPO processes A � Im�χm�∕Im�χ0�. It can be seen how it
broadens as γv increases, which explains the blueshift found in
the maximum delay (see Figs. 2 and 3). To finish the study of
the ordered system, we study the maximum fractional delay
F opt (versus δ) by increasing the parameter γv and the input
Rabi frequency; see Fig. 4(a). Figure 4(b) shows F opt as a func-
tion of the input intensity for γv � 3. Two local maxima of
F opt can be seen for each value of γv. The first at lower input
intensities relates to creation of one exciton while the second
arises at higher intensities which allow generation/annihilation
of two excitons in the aggregate. The characteristic times of
population dynamics in these maxima are δopt ∼ γ10 and
δopt ∼ γ30 � γ31, respectively. The latter could take higher val-
ues than γ10, giving rise to a larger bandwidth with lower dis-
tortion; see Fig. 3. Moreover, by analyzing Eq. (3), it can be
demonstrated that such an optimal functionality could be
achieved for γR≲33. This collective parameter can be obtained
by modifying the temperature or increasing the aggregate con-
centration within reasonable experimental conditions.
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Fig. 2. (a) Fractional delay and (b) transmittance of a sinusoidal input
signal as a function of the modulation frequency δ for different values of
the ratio γv in absence of disorder. Inset (a) shows the absorption hole of
the weak field. Inset (b) presents the output–input curve for the strong
field
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��2, with the arrow pointing the saturation intensity for γv � 3.
The symbols result from analytical calculations based on Eq. (3).
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Fig. 3. (a) Fractional delay, (b) distortion and (inset) transmittance
for pulsed input signals against the initial pulse temporal width
(FWHM) in absence of disorder. Different values of γv are considered.
Lines with empty dots (γv � 1) and solid dots (γv � 2) show delays
for incident intensities below the saturation point which reproduce the
constrained distortion obtained for γv � 3.
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Last, we analyze the effects of size dispersion on the slow-
light performance for input pulsed signals. Aggregates are
formed by coherent segments of different length N , such that
disorder effects can be modeled by a discrete distribution p�N �
with mean N̄ and standard deviation a. In [12], it was dem-
onstrated that p�N � can be replaced by a continuous one of
transition energies ωN

10. Thus, such N -dependency is intro-
duced into the detunings ΔN

10 and, ΔN
21 while it is neglected

for the rest of parameters. In this Letter, we integrate
Eq. (1) for every coherent segment to calculate its contribution
to the electric polarization in Eq. (2). Finally, to obtain the total
molecular field, we average such terms with the following
Gaussian distribution:

X
N

p�N � �
X
N

exp
�
−�N−N̄ �2

2a2

�
ffiffiffiffiffiffiffiffiffiffi
2πa2

p →
Z

∞

−∞

exp
�
−�ΔN

10−Δ10�2
2 G2

�
ffiffiffiffiffiffiffiffiffiffiffi
2πG2

p dΔN
10:

(4)

Here, G � 2π2Ja∕ℏΓ10N̄ 3 denotes the magnitude of the
J-bandwidth resulting from the inhomogeneous broadening
and Δ10 refers to the detuning respect to the central frequency
of the Gaussian. Similarly to the two-level approximation, the
maximum attainable delays are reduced when G increases.
However, we show that this nondesirable effect is much more
constrained in the current four-level model; see Fig. 5(a). For
example, a magnitude of disorder G � 2 reduces the fractional
delay up to 2.5 times with respect to the value obtained without
size dispersion. However, this reduction is lower than that
found in the two-level approximation where delays resulted
4 times lower [5]. Moreover, similarly to what was shown in
that work, the detrimental effect of a larger inhomogeneous
linewidth can be compensated by increasing the value of γR.
More importantly, as a new feature of the current model, the
presence of disorder results in a remarkable blueshift of the pulse
bandwidth susceptible of slow-light performance up to values
close to 100 GHz. In such a case the delay is still relevant
for applications, F ≃ 0.2 for G � 2, while keeping D ≦ 2.

Finally, we look at the aggregate photostability under the
considered illumination conditions. For example, taking the
optimum Rabi frequency inside the film Ω0 ∼ 1.7Γ10 for γR �
30 and a pulse width of 70 ps, we obtain an intensity of 1.3 ×
1014 photons∕cm2 per pulse in the sample. This value is

clearly below the damage threshold in experiments [17]
(∼1016 photons∕cm2 per pulse), so photobleaching is not
expected to occur in the proposed optical device.

In summary, we have analyzed CPO-based slow light in a
J-aggregate nanofilm under pulse intensities high enough to
excite two-exciton dynamics. Fractional delays up to ∼0.5 with
constrained distortion can be obtained for pulse bandwidths of
∼14 GHz. Size dispersion significantly increases this available
bandwidth, up to values close to 100 GHz, maintaining a
fractional delay close to 0.2. These figures of merit support
J-aggregates as a promising candidate for slow-light devices
at the nanoscale.
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Fig. 5. (a) Fractional delay, (b) distortion and (inset) transmittance
for pulsed input signals against FWHM for the ratio γv � 3. Different
magnitudes of disorder G are considered.
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